Displaying all 2 publications

Abstract:
Sort:
  1. Abdullah MA, Rahmah AU, Man Z
    J Hazard Mater, 2010 May 15;177(1-3):683-91.
    PMID: 20060641 DOI: 10.1016/j.jhazmat.2009.12.085
    Ceiba pentandra (L.) Gaertn (kapok) is a natural sorbent that exhibits excellent hydrophobic-oleophilic characteristics. The effect of packing density, the oil types and solvent treatment on the sorption characteristics of kapok was studied in a batch system. Oil sorption capacity, retention capacity, entrapment stability and kapok reusability were evaluated. Based on SEM and FTIR analyses, kapok fiber was shown to be a lignocellulosic material with hydrophobic waxy coating over the hollow structures. Higher packing density at 0.08 g/ml showed lower sorption capacity, but higher percentage of dynamic oil retention, with only 1% of oil drained out from the test cell. Kapok remained stable after fifteen cycles of reuse with only 30% of sorption capacity reduction. The oil entrapment stability at 0.08 g/ml packing was high with more than 90% of diesel and used engine oil retained after horizontal shaking. After 8h of chloroform and alkali treatment, 2.1% and 26.3% reduction in sorption capacity were observed, respectively, as compared to the raw kapok. The rigid hollow structure was reduced to flattened-like structure after alkali treatment, though no major structural difference was observed after chloroform treatment. Malaysian kapok has shown great potential as an effective natural oil sorbent, owing to high sorption and retention capacity, structural stability and high reusability.
    Matched MeSH terms: Ceiba/metabolism*
  2. Tye YY, Lee KT, Wan Abdullah WN, Leh CP
    Bioresour Technol, 2012 Jul;116:536-9.
    PMID: 22595099 DOI: 10.1016/j.biortech.2012.04.025
    The importance of bioethanol currently has increased tremendously as it can reduce the total dependency on fossil-fuels, especially gasoline, in the transportation sector. In this study, Ceiba pentandra (kapok fiber) was introduced as a new resource for bioethanol production. The results of chemical composition analysis showed that the cellulose (alpha- and beta-) contents were 50.7%. The glucose composition of the fiber was 59.8%. The high glucose content indicated that kapok fiber is a potential substrate for bioethanol production. However, without a pretreatment, the kapok fiber only yielded 0.8% of reducing sugar by enzymatic hydrolysis. Thus, it is necessary to pre-treat the kapok fiber prior to hydrolysis. Taking into account environmentally friendliness, only simple pretreatments with minimum chemical or energy consumption was considered. It was interesting to see that by adopting merely water, acid and alkaline pretreatments, the yield of reducing sugar was increased to 39.1%, 85.2% and >100%, respectively.
    Matched MeSH terms: Ceiba/metabolism*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links