Displaying all 3 publications

Abstract:
Sort:
  1. Ilias IA, Negishi K, Yasue K, Jomura N, Morohashi K, Baharum SN, et al.
    J Plant Res, 2019 Mar;132(2):159-172.
    PMID: 30341720 DOI: 10.1007/s10265-018-1067-0
    Expansin is a non-enzymatic protein which plays a pivotal role in cell wall loosening by inducing stress relaxation and extension in the plant cell wall. Previous studies on Arabidopsis, Petunia × hybrida, and tomato demonstrated that the suppression of expansin gene expression reduced plant growth but expansin overexpression does not necessarily promotes growth. In this study, both expansin gene suppression and overexpression in dark-grown transgenic Arabidopsis seedlings resulted in reduced hypocotyl length at late growth stages with a more pronounced effect for the overexpression. This defect in hypocotyl elongation raises questions about the molecular effect of expansin gene manipulation. RNA-seq analysis of the transcriptomic changes between day 3 and day 5 seedlings for both transgenic lines found numerous differentially expressed genes (DEGs) including transcription factors and hormone-related genes involved in different aspects of cell wall development. These DEGs imply that the observed hypocotyl growth retardation is a consequence of the concerted effect of regulatory factors and multiple cell-wall related genes, which are important for cell wall remodelling during rapid hypocotyl elongation. This is further supported by co-expression analysis through network-centric approach of differential network cluster analysis. This first transcriptome-wide study of expansin manipulation explains why the effect of expansin overexpression is greater than suppression and provides insights into the dynamic nature of molecular regulation during etiolation.
    Matched MeSH terms: Cell Wall/physiology*
  2. Rai KM, Balasubramanian VK, Welker CM, Pang M, Hii MM, Mendu V
    BMC Plant Biol, 2015;15:187.
    PMID: 26232118 DOI: 10.1186/s12870-015-0576-4
    The plant cell wall serves as a primary barrier against pathogen invasion. The success of a plant pathogen largely depends on its ability to overcome this barrier. During the infection process, plant parasitic nematodes secrete cell wall degrading enzymes (CWDEs) apart from piercing with their stylet, a sharp and hard mouthpart used for successful infection. CWDEs typically consist of cellulases, hemicellulases, and pectinases, which help the nematode to infect and establish the feeding structure or form a cyst. The study of nematode cell wall degrading enzymes not only enhance our understanding of the interaction between nematodes and their host, but also provides information on a novel source of enzymes for their potential use in biomass based biofuel/bioproduct industries. Although there is comprehensive information available on genome wide analysis of CWDEs for bacteria, fungi, termites and plants, but no comprehensive information available for plant pathogenic nematodes. Herein we have performed a genome wide analysis of CWDEs from the genome sequenced phyto pathogenic nematode species and developed a comprehensive publicly available database.
    Matched MeSH terms: Cell Wall/physiology*
  3. Sarmiento ME, Alvarez N, Chin KL, Bigi F, Tirado Y, García MA, et al.
    Tuberculosis (Edinb), 2019 03;115:26-41.
    PMID: 30948174 DOI: 10.1016/j.tube.2019.01.003
    Even after decades searching for a new and more effective vaccine against tuberculosis, the scientific community is still pursuing this goal due to the complexity of its causative agent, Mycobacterium tuberculosis (Mtb). Mtb is a microorganism with a robust variety of survival mechanisms that allow it to remain in the host for years. The structure and nature of the Mtb envelope play a leading role in its resistance and survival. Mtb has a perfect machinery that allows it to modulate the immune response in its favor and to adapt to the host's environmental conditions in order to remain alive until the moment to reactivate its normal growing state. Mtb cell envelope protein, carbohydrate and lipid components have been the subject of interest for developing new vaccines because most of them are responsible for the pathogenicity and virulence of the bacteria. Many indirect evidences, mainly derived from the use of monoclonal antibodies, support the potential protective role of Mtb envelope components. Subunit and DNA vaccines, lipid extracts, liposomes and membrane vesicle formulations are some examples of technologies used, with encouraging results, to evaluate the potential of these antigens in the protective response against Mtb.
    Matched MeSH terms: Cell Wall/physiology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links