Displaying all 10 publications

Abstract:
Sort:
  1. Trache D, Hussin MH, Hui Chuin CT, Sabar S, Fazita MR, Taiwo OF, et al.
    Int J Biol Macromol, 2016 Dec;93(Pt A):789-804.
    PMID: 27645920 DOI: 10.1016/j.ijbiomac.2016.09.056
    Considering its widespread usage in various fields, such as food, pharmaceutical, medical, cosmetic and polymer composites industries, microcrystalline cellulose (MCC) is becoming impellent due to increasing demand of alternatives to non-renewable and scarce fossil materials. Although it still suffers from some drawbacks, MCC has recently gained more interest owing to its renewability, non-toxicity, economic value, biodegradability, high mechanical properties, high surface area and biocompatibility. New sources, new isolation processes, and new treatments are currently under development to satisfy the increasing demand of producing new types of MCC-based materials on an industrial scale. Therefore, this review assembles the current knowledge on the isolation of MCC from different sources using various procedures, its characterization, and its application in bio-composites. Challenges and future opportunities of MCC-based composites are discussed as well as obstacles remaining for their extensive uses.
    Matched MeSH terms: Cellulose/isolation & purification*
  2. Kian LK, Jawaid M, Ariffin H, Alothman OY
    Int J Biol Macromol, 2017 Oct;103:931-940.
    PMID: 28549863 DOI: 10.1016/j.ijbiomac.2017.05.135
    In this study, microcrystalline cellulose (MCC) was extracted from roselle fiber through acid hydrolysis treatment and its properties were compared with those of commercially available MCC. The physicochemical and morphological characteristics, elemental composition, size distribution, crystallinity and thermal properties of the obtained MCC were analyzed in this work. Fourier transform infrared spectroscopy (FTIR) analysis provided clear evidence that the characteristic peak of lignin was absent in the spectrum of the MCC prepared from roselle fiber. Rough surface and slight aggregation of MCC were observed by scanning electron microscopy (SEM). Energy dispersive X-ray (EDX) analysis showed that pure MCC with small quantities of residues and impurities was obtained, with a similar elemental composition to that of commercial MCC. A mean diameter of approximately 44.28μm was measured for MCC by using a particle size analyzer (PSA). X-ray diffraction (XRD) showed the crystallinity increased from 63% in roselle pulp to 78% in roselle MCC, the latter having a slightly higher crystallinity than that of commercial MCC (74%). TGA and DSC results indicated that the roselle MCC had better thermal stability than the roselle pulp, whereas it had poorer thermal stability in comparison with commercial MCC. Thus, the isolated MCC from roselle fibers will be going to use as reinforcing element in green composites and may be a precursor for future roselle derived nanocellulose, and thus a promising subject in nanocomposite research.
    Matched MeSH terms: Cellulose/isolation & purification*
  3. Lamaming J, Hashim R, Leh CP, Sulaiman O
    Carbohydr Polym, 2017 Jan 20;156:409-416.
    PMID: 27842840 DOI: 10.1016/j.carbpol.2016.09.053
    Cellulose nanocrystals were isolated from oil palm trunk by total chlorine free method. The samples were either water pre-hydrolyzed or non-water pre-hydrolyzed, subjected to soda pulping, acidified and ozone bleached. Cellulose and cellulose nanocrystal (CNC) physical, chemical, thermal properties, and crystallinity index were investigated by composition analysis, scanning electron microscopy, transmission electron microscopy, fourier transform infrared, thermogravimetric analysis and X-ray diffraction. Water pre-hydrolysis reduced lignin (<0.5%) and increased holocellulose (99.6%) of ozone-bleached cellulose. Water pre-hydrolyzed cellulose exhibited surface fibrillation and peeling off after acid hydrolysis process compared to non-fibrillated of non-water pre-hydrolyzed cellulose. Water pre-hydrolysis improved final CNC crystallinity (up to 75%) compared to CNC without water pre-hydrolysis crystallinity (69%). Cellulose degradation was found to occur during ozone bleaching stage but CNC showed an increase in crystallinity after acid hydrolysis. Thus, oil palm trunk CNC can be potentially applied in pharmaceutical, food, medical and nanocomposites.
    Matched MeSH terms: Cellulose/isolation & purification*
  4. Haafiz MK, Hassan A, Zakaria Z, Inuwa IM
    Carbohydr Polym, 2014 Mar 15;103:119-25.
    PMID: 24528708 DOI: 10.1016/j.carbpol.2013.11.055
    The objective of this study is to compare the effect of two different isolation techniques on the physico-chemical and thermal properties of cellulose nanowhiskers (CNW) from oil palm biomass obtained microcrystalline cellulose (MCC). Fourier transform infrared analysis showed that there are no significant changes in the peak positions, suggesting that the treatments did not affect the chemical structure of the cellulose fragment. Scanning electron microscopy showed that the aggregated structure of MCC is broken down after treatment. Transmission electron microscopy revealed that the produced CNW displayed a nanoscale structure. X-ray diffraction analysis indicated that chemical swelling improves the crystallinity of MCC while maintaining the cellulose I structure. Acid hydrolysis however reduced the crystallinity of MCC and displayed the coexistence of cellulose I and II allomorphs. The produced CNW is shown to have a good thermal stability and hence is suitable for a range of applications such as green biodegradable nanocomposites reinforced with CNW.
    Matched MeSH terms: Cellulose/isolation & purification*
  5. Mohamad Haafiz MK, Eichhorn SJ, Hassan A, Jawaid M
    Carbohydr Polym, 2013 Apr 2;93(2):628-34.
    PMID: 23499105 DOI: 10.1016/j.carbpol.2013.01.035
    In this work, we successfully isolated microcrystalline cellulose (MCC) from oil palm empty fruit bunch (OPEFB) fiber-total chlorine free (TCF) pulp using acid hydrolysis method. TCF pulp bleaching carried out using an oxygen-ozone-hydrogen peroxide bleaching sequence. Fourier transform infrared (FT-IR) spectroscopy indicates that acid hydrolysis does not affect the chemical structure of the cellulosic fragments. The morphology of the hydrolyzed MCC was investigated using scanning electron microscopy (SEM), showing a compact structure and a rough surface. Furthermore, atomic force microscopy (AFM) image of the surface indicates the presence of spherical features. X-ray diffraction (XRD) shows that the MCC produced is a cellulose-I polymorph, with 87% crystallinity. The MCC obtained from OPEFB-pulp is shown to have a good thermal stability. The potential for a range of applications such as green nano biocomposites reinforced with this form of MCC and pharmaceutical tableting material is discussed.
    Matched MeSH terms: Cellulose/isolation & purification*
  6. Kian LK, Saba N, Jawaid M, Fouad H
    Int J Biol Macromol, 2020 Aug 01;156:347-353.
    PMID: 32278601 DOI: 10.1016/j.ijbiomac.2020.04.015
    Olive fiber is a renewable natural fiber which has potential as an alternative biomass for extraction of microcrystalline cellulose (MCC). MCC has been widely applied in various industries owing to its small dimensional size for ease of reactive fabrication process. At present study, a serial treatments of bleaching, alkaline and acid hydrolysis was employed to extract OL-BLF, OL-PUF, and OL-MCC respectively from olive stem fiber. In morphology examination, a feature of short micro-crystallite particles was obtained for OL-MCC. The particle size was found gradually reducing from OL-PUF (305.31 μm) to OL-MCC (156.06 μm) due to the disintegration of cellulose fibrils. From physicochemical analysis, most lignin and hemicellulose components had been removed from OL-BLF to form OL-PUF with individually fibril structure. The elemental analysis revealed that highly pure cellulose component was obtained for OL-MCC. Also, the rigidity had been improved from OL-BLF to OL-PUF, while with the highest for OL-MCC with 74.2% crystallinity, endowing it as a reliable load-bearing agent. As for thermal analysis, OL-MCC had the most stable heat resistance in among the chemically-treated fibers. Therefore, olive MCC could act as a promising reinforcing agent to withstand harsh conditions for variety fields of composite applications.
    Matched MeSH terms: Cellulose/isolation & purification
  7. Teo HL, Wahab RA
    Int J Biol Macromol, 2020 Oct 15;161:1414-1430.
    PMID: 32791266 DOI: 10.1016/j.ijbiomac.2020.08.076
    There is an array of methodologies to prepare nanocellulose (NC) and its fibrillated form (CNF) with enhanced physicochemical characteristics. However, acids, bases or organosolv treatments on biomass are far from green, and seriously threaten the environment. Current approach to produce NC/CNF from biomass should be revised and embrace the concept of sustainability and green chemistry. Although hydrothermal process, high-pressure homogenization, ball milling technique, deep eutectic solvent treatment, enzymatic hydrolysis etc., are the current techniques for producing NC, the route designs remain imperfect. Herein, this review highlights the latest methodologies in the pre-processing and isolating of NC/CNF from lignocellulose biomass, by largely focusing on related papers published in the past two years till date. This article also explores the latest advancements in environmentally friendly NC extraction techniques that cooperatively use ball milling and enzymatic hydrolytic routes as an eco-efficient way to produce NC/CNF, alongside the potential applications of the nano-sized celluloses.
    Matched MeSH terms: Cellulose/isolation & purification
  8. Owolabi AF, Haafiz MK, Hossain MS, Hussin MH, Fazita MR
    Int J Biol Macromol, 2017 Feb;95:1228-1234.
    PMID: 27836655 DOI: 10.1016/j.ijbiomac.2016.11.016
    In the present study, microcrystalline cellulose (MCC) was isolated from oil palm fronds (OPF) using chemo-mechanical process. Wherein, alkaline hydrogen peroxide (AHP) was utilized to extract OPF fibre at different AHP concentrations. The OPF pulp fibre was then bleached with acidified sodium chlorite solution followed by the acid hydrolysis using hydrochloric acid. Several analytical methods were conducted to determine the influence of AHP concentration on thermal properties, morphological properties, microscopic and crystalline behaviour of isolated MCC. Results showed that the MCC extracted from OPF fibres had fibre diameters of 7.55-9.11nm. X-ray diffraction (XRD) analyses revealed that the obtained microcrystalline fibre had both celluloses I and cellulose II polymorphs structure, depending on the AHP concentrations. The Fourier transmission infrared (FTIR) analyses showed that the AHP pre-hydrolysis was successfully removed hemicelluloses and lignin from the OPF fibre. The crystallinity of the MCC was increased with the AHP concentrations. The degradation temperature of MCC was about 300°C. The finding of the present study showed that pre-treatment process potentially influenced the quality of the isolation of MCC from oil palm fronds.
    Matched MeSH terms: Cellulose/isolation & purification*
  9. Rohaizu R, Wanrosli WD
    Ultrason Sonochem, 2017 01;34:631-639.
    PMID: 27773290 DOI: 10.1016/j.ultsonch.2016.06.040
    Highly stable and dispersible nanocrystalline cellulose (NCC) was successfully isolated from oil palm empty fruit bunch microcrystalline cellulose (OPEFB-MCC), with yields of 93% via a sono-assisted TEMPO-oxidation and a subsequent sonication process. The sono-assisted treatment has a remarkable effect, resulting in an increase of more than 100% in the carboxylate content and a significant increase of approximately 39% in yield compared with the non-assisted process. TEM images reveal the OPEFB-NCC to have rod-like crystalline morphology with an average length and width of 122 and 6nm, respectively. FTIR and solid-state 13C-NMR analyses suggest that oxidation of cellulose chain hydroxyl groups occurs at C6. XRD analysis shows that OPEFB-NCC consists primarily of a crystalline cellulose I structure. Both XRD and 13C-NMR indicate that the OPEFB-NCC has a lower crystallinity than the OPEFB-MCC starting material. Thermogravimetric analysis illustrates that OPEFB-NCC is less thermally stable than OPEFB-MCC but has a char content of 46% compared with 7% for the latter, which signifies that the carboxylate functionality acts as a flame retardant.
    Matched MeSH terms: Cellulose/isolation & purification*
  10. Soo YT, Ng SW, Tang TK, Ab Karim NA, Phuah ET, Lee YY
    J Sci Food Agric, 2021 Aug 15;101(10):4161-4172.
    PMID: 33428211 DOI: 10.1002/jsfa.11054
    BACKGROUND: Palm pressed fibre (PPF) is a cellulose-rich biomass residue produced during palm oil extraction. Its high cellulose content allows the isolation of cellulose nanocrystal (CNC). CNC has attracted scientific interest due to its biodegradability, biocompatibility and low cost. The present study isolated CNC from PPF using a cation exchange resin, which is an environmentally friendly and less harsh hydrolysis method than conventional mineral acid hydrolysis. Isolated CNC was used to stabilise an oil-in-water emulsion and the emulsion stability was evaluated in terms of droplet size, morphology and physical stability.

    RESULTS: PPF was subjected to alkali and bleach treatment prior to hydrolysis, which successfully removed 54% and 75% of non-cellulosic components (hemicellulose and lignin, respectively). Hydrolysis conditions of 5 h, 15:1 (w/w) resin-to-pulp ratio and 50 °C produced CNC particles of 50-100 nm in length. CNC had a crystallinity index of 42% and appeared rod-like morphologically. CNC-stabilised emulsion had better stability when used in combination with soy lecithin (SL), a well-established, commonly used food stabiliser. Emulsion stabilised by the binary mixture of CNC and SL had droplet size, morphology and physical stability comparable to those of emulsion stabilised using SL.

    CONCLUSIONS: CNC was successfully isolated from PPF through a cation exchange resin. This offers an alternative usage for the underutilised PPF to be converted into value-added products. Isolated CNC was also found to have promising potential in the stabilisation of Pickering emulsions. These results provide useful information indicating CNC as a natural and sustainable stabiliser for food, cosmeceutical and pharmaceutical applications. © 2021 Society of Chemical Industry.

    Matched MeSH terms: Cellulose/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links