Displaying all 6 publications

Abstract:
Sort:
  1. Golime R, Chandra B, Palit M, Dubey DK
    Arch Toxicol, 2019 06;93(6):1473-1484.
    PMID: 30923868 DOI: 10.1007/s00204-019-02435-4
    Humans are constantly exposed to a wide range of reactive and toxic chemicals from the different sources in everyday life. Identification of the exposed chemical helps in the detection and understanding the exposure associated adverse health effects. Covalent adducts of proteins and DNA formed after xenobiotics exposure may serve as readily measurable indicators of these exposures. Measuring the exposed chemicals with focus on adducts resulting from the nucleophilic interactions with blood proteins is useful in the development of diagnostic markers. Particularly, the most abundant proteins such as albumin and hemoglobin acts as dominant scavengers for many reactive chemicals in blood and can serve as excellent diagnostic candidates to determine the type of chemical exposure. This review focuses on the potential application of an adductomics approach for the screening of bimolecular adducts of chemical warfare agents (CWAs). Recent incidents of CWAs use in Syria, Malaysia, and the UK illustrate the continuing threat of chemical warfare agents in the modern world. Detection of CWAs and their metabolites in blood or in other body fluids of victims depends on immediate access to victims. Concentrations of intact CWAs in body fluids of surviving victims may decline rapidly within a few days. Certain CWAs, particularly nerve agents and vesicants, form covalent bonds with certain amino acids to form CWA-protein adducts. Proteins that are abundant in the blood, including albumin and hemoglobin, may carry these adducts longer after the original exposure. We searched MEDLINE and ISI Web of Science databases using the key terms "adductomics" "adducts of CWAs," "CWAs adducts detection in the biological samples," "protein adducts of CWAs," alone and in combination with the keywords "detection" "intoxication" "exposure" "adverse effects" and "toxicity." We also included non-peer-reviewed sources such as text books, relevant newspaper reports, and applicable Internet resources. We screened bibliographies of identified articles for additional relevant studies including non-indexed reports. These searches produced 1931 citations of which only relevant and nonduplicate citations were considered for this review. The analysis of biomedical samples has several purposes including detecting and identifying the type of chemical agent exposed, understanding the biological mechanism, assists in giving adequate treatment, determining the cause of death and providing evidence in a court of justice for forensic investigations. Rapid advances in the mass spectrometry to acquire high-quality data with greater resolution enabled the analysis of protein and DNA adducts of xenobiotics including CWAs and place the rapidly advancing 'adductomics' next to the other "-omics" technologies. Adductomics can serve as a powerful bioanalytical tool for the verification of CWAs exposure. This review mostly describes the protein adducts for nerve agents and vesicants, outlines the procedures for measuring adducts, and suggests the evolving (or future) use of adducts in the detection and verification of CWAs.
    Matched MeSH terms: Chemical Warfare*; Chemical Warfare Agents/toxicity*
  2. Ovenden SPB, Webster RL, Micich E, McDowall LJ, McGill NW, Williams J, et al.
    Talanta, 2020 May 01;211:120753.
    PMID: 32070627 DOI: 10.1016/j.talanta.2020.120753
    The organophosphorous nerve agent VX is classified by the Chemical Warfare Convention (CWC) as a Schedule 1 chemical; namely a substance that is highly toxic with no use that is of benefit to society. Even with this classification, the nefarious use of the Schedule 1 chemical VX has been observed, as demonstrated in 2017 in Malaysia. Therefore, undertaking chemical analysis on samples of VX to identify chemical attribution signatures (CAS) for chemical forensics is required. To further understand the chemical profile of VX, and to aid in the identification of potential CAS, three in house synthesised stocks of VX were investigated. The three VX stocks analysed were synthesised in 2014, 2017 and 2018 using the same method, allowing for a comparison of data between each of the stocks at different stages of storage. As opposed to a majority of literature reports, these agent stocks were not stabilised, nor were they subjected to forced degradation. Using NMR, high resolution (HR) LC-HRMS, GC-(EI)MS and GC-(CI)MS to gain a full insight into the CAS profile, a total of 44 compounds were identified. Of these compounds, 30 were readily identified through accurate mass measurement and NIST library matches. A further seven were identified through extensive LC-HRMS/MS studies, with seven remaining unresolved. Several compounds, identified in minor amounts, were able to be traced back to impurities in the precursor compounds used in the synthesis of VX, and hence may be useful as CAS for source attribution.
    Matched MeSH terms: Chemical Warfare
  3. Sakurada K, Ohta H
    Leg Med (Tokyo), 2020 Nov;47:101761.
    PMID: 32702607 DOI: 10.1016/j.legalmed.2020.101761
    On the battlefields of Syria, many innocent civilians have been killed or injured by sarin poisoning. In Malaysia in February 2017, a North Korean man was assassinated with VX at Kuala Lumpur International Airport. In the face of such threats, a more effective antidote against organophosphonate acetylcholinesterase (AChE) inhibitors is needed, one that can freely penetrate into the central nervous system (CNS) through the blood-brain barrier (BBB). In the 1995 Tokyo subway sarin attack, which produced more than 6,000 victims, 2-pyridinealdoxime methiodide was the most commonly used antidote in hospitals, but it was unable to prevent CNS damage and no other oximes have been approved for use in Japan. Ultimately, 12 people died, and many victims had severe neurological injuries or sequelae. Although more than 25 years have passed since the incident, progress has been slow in the development of a new antidote that can penetrate the BBB, restore AChE activity in the CNS, and definitely prevent brain injury. From the perspectives of countering terrorism and protecting innocent people from nerve agent attacks, the search for nerve agent antidotes should be accelerated with the goals of improving both survival and quality of life. This review gives an overview of a series of our studies on the development of a new antidote since the Tokyo subway sarin attack and emphasizes that there is unfortunately still no promising antidote for saving the CNS in Japan.
    Matched MeSH terms: Chemical Warfare Agents/metabolism; Chemical Warfare Agents/poisoning*
  4. Macfarlane LRS
    Matched MeSH terms: Chemical Warfare
  5. Amend N, Niessen KV, Seeger T, Wille T, Worek F, Thiermann H
    Ann N Y Acad Sci, 2020 11;1479(1):13-28.
    PMID: 32198755 DOI: 10.1111/nyas.14336
    Although 193 states have committed to the Chemical Weapons Convention and 98% of the declared chemical weapons stockpiles have been destroyed so far, nerve agent poisoning remains a lingering threat. The recent dissemination of sarin in Syria, the assassination of Kim Jong-Nam in Malaysia, and the assault on Sergei Skripal in the United Kingdom underline the need for effective treatment. The current therapeutic options of a muscarinic receptor antagonist, an oxime, and an anticonvulsant have been unchanged for decades. Therefore, new therapeutic strategies, for example, bioscavengers and receptor-active substances, are promising concepts that have to be examined for their benefits and limitations. In order to facilitate rapid diagnosis in challenging clinical situations, point-of-care diagnostics and detection are of importance. Therapeutic guidance concerning the duration and success of the current oxime therapy via determination of the cholinesterase status can contribute to an optimal use of resources. In summary, the challenges of current and future therapies for nerve agent poisoning and key diagnostic devices will be discussed.
    Matched MeSH terms: Chemical Warfare Agents
  6. Yokoyama K
    Neurotoxicology, 2007 Mar;28(2):364-73.
    PMID: 16730798
    Attention has been paid to neurobehavioral effects of occupational and environmental exposures to chemicals such as pesticides, heavy metals and organic solvents. The area of research that includes neurobehavioral methods and effects in occupational and environmental health has been called "Occupational and Environmental Neurology and Behavioral Medicine." The methods, by which early changes in neurological, cognitive and behavioral function can be assessed, include neurobehavioral test battery, neurophysiological methods, questionnaires and structured interview, biochemical markers and imaging techniques. The author presents his observations of neurobehavioral and neurophysiological effects in Tokyo subway sarin poisoning cases as well as in pesticide users (tobacco farmers) in Malaysia in relation to Green Tobacco Sickness (GTS). In sarin cases, a variety effects were observed 6-8 months after exposure, suggesting delayed neurological effects. Studies on pesticide users revealed that organophosphorus and dithiocarbamate affected peripheral nerve conduction and postural balance; subjective symptoms related to GTS were also observed, indicating the effects of nicotine absorbed from wet tobacco leaves. In addition, non-neurological effects of pesticides and other chemicals are presented, in relation to genetic polymorphism and oxidative stress.
    Matched MeSH terms: Chemical Warfare Agents/metabolism; Chemical Warfare Agents/poisoning*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links