As part of a search for novel inhibitors of HIV-1 reverse transcriptase, the acetone extract of the giant African snail, Achatina fulica, was shown to be active. Fractionation of the extract yielded inophyllums A, B, C, and E and calophyllolide (1a, 2a, 3a, 3b, and 6), previously isolated from Calophyllum inophyllum Linn., a known source of nutrition for A. fulica. From a methanol/methylene chloride extract of C. inophyllum, the same natural products in considerably greater yield were isolated in addition to a novel enantiomer of soulattrolide (4), inophyllum P (2b), and two other novel compounds, inophyllums G-1 (7) and G-2 (8). The absolute stereochemistry of inophyllum A (1a) was determined to be 10(R), 11(S), 12(S) from a single-crystal X-ray analysis of its 4-bromobenzoate derivative, and the relative stereochemistries of the other inophyllums isolated from C. inophyllum were established by a comparison of their 1H NMR NOE values and coupling constants to those of inophyllum A (1a). Inophyllums B and P (2a and 2b) inhibited HIV reverse transcriptase with IC50 values of 38 and 130 nM, respectively, and both were active against HIV-1 in cell culture (IC50 of 1.4 and 1.6 microM). Closely related inophyllums A, C, D, and E, including calophyllic acids, were significantly less active or totally inactive, indicating certain structural requirements in the chromanol ring. Altogether, 11 compounds of the inophyllum class were isolated from C. inophyllum and are described together with the SAR of these novel anti-HIV compounds.
There are six tocol analogs present in palm oil, namely α-tocopherol (α-T), α-tocomonoenol (α-T₁), α-tocotrienol (α-T₃), γ-tocotrienol (γ-T₃), β-tocotrioenol (β-T₃) and δ-tocotrienol (δ-T₃). These analogs were difficult to separate chromatographically due to their similar structures, physical and chemical properties. This paper reports on the effect of pressure and injection solvent on the separation of the tocol analogs in palm oil. Supercritical CO₂ modified with ethanol was used as the mobile phase. Both total elution time and resolution of the tocol analogs decreased with increased pressure. Ethanol as an injection solvent resulted in peak broadening of the analogs within the entire pressure range studied. Solvents with an eluent strength of 3.4 or less were more suitable for use as injecting solvents.