METHODS: Each alloy was immersed in growth medium for 0-21 days, and the elution was analyzed to detect the released metals. The elution was further used as the treatment medium and exposed to seeded HGFs overnight. The HGFs were also cultured directly to the titanium alloy for 1, 3 and 7 days. Cell viability was then determined.
RESULTS: Six metal elements were detected in the immersion of titanium alloys. Among these elements, molybdenum released from Ti-10Mo-10Cr had the highest concentration throughout the immersion period. Significant difference in the viability of fibroblast cells treated with growth medium containing metals and with direct exposure technique was not observed. The duration of immersion did not significantly affect cell viability. Nevertheless, cell viability was significantly affected after 1 and 7 days of exposure, when the cells were grown directly onto the alloy surfaces.
CONCLUSIONS: Within the limitation of this study, the newly developed β-titanium alloys are non-cytotoxic to human gingival fibroblasts.
METHODS: Six master dies were duplicated from the prepared maxillary first premolar tooth using nonprecious metal alloy (Wiron 99). Thirty copings (Procera AllCeram) of 0.6-mm thickness were manufactured. Three types of luting media were used: zinc phosphate cement (Elite), glass ionomer cement (Fuji I), and dual-cured composite resin cement (Panavia F). Ten copings were cemented with each type. Two master dies were used for each group, and each of them was used to lute five copings. All groups were cemented according to manufacturer's instructions and received a static load of 5 kg during cementation. After 24 hours of distilled water storage at 37 degrees C, the copings were vertically compressed using a universal testing machine at a crosshead speed of 1 mm/min.
RESULTS: ANOVA revealed significant differences in the load at fracture among the three groups (p < 0.001). The fracture strength results showed that the mean fracture strength of zinc phosphate cement (Elite), glass ionomer cement (Fuji I), and resin luting cement (Panavia F) were 1091.9 N, 784.8 N, and 1953.5 N, respectively.
CONCLUSION: Different luting agents have an influence on the fracture resistance of Procera AllCeram copings.