Displaying all 6 publications

Abstract:
Sort:
  1. Muhd Julkapli N, Bagheri S, Bee Abd Hamid S
    ScientificWorldJournal, 2014;2014:692307.
    PMID: 25054183 DOI: 10.1155/2014/692307
    During the process and operation of the dyes, the wastes produced were commonly found to contain organic and inorganic impurities leading to risks in the ecosystem and biodiversity with the resultant impact on the environment. Improper effluent disposal in aqueous ecosystems leads to reduction of sunlight penetration which in turn diminishes photosynthetic activity, resulting in acute toxic effects on the aquatic flora/fauna and dissolved oxygen concentration. Recently, photodegradation of various synthetic dyes has been studied in terms of their absorbance and the reduction of oxygen content by changes in the concentration of the dye. The advantages that make photocatalytic techniques superior to traditional methods are the ability to remove contaminates in the range of ppb, no generation of polycyclic compounds, higher speed, and lower cost. Semiconductor metal oxides, typically TiO2, ZnO, SnO, NiO, Cu2O, Fe3O4, and also CdS have been utilized as photocatalyst for their nontoxic nature, high photosensitivity, wide band gap and high stability. Various process parameters like photocatalyst dose, pH and initial dye concentrations have been varied and highlighted. Research focused on surface modification of semiconductors and mixed oxide semiconductors by doping them with noble metals (Pt, Pd, Au, and Ag) and organic matter (C, N, Cl, and F) showed enhanced dye degradation compared to corresponding native semiconductors. This paper reviews recent advances in heterogeneous photocatalytic decolorization for the removal of synthetic dyes from water and wastewater. Thus, the main core highlighted in this paper is the critical selection of semiconductors for photocatalysis based on the chemical, physical, and selective nature of the poisoning dyes.
    Matched MeSH terms: Coloring Agents/radiation effects
  2. Dabbagh A, Abdullah BJ, Abu Kasim NH, Ramasindarum C
    Int J Hyperthermia, 2014 Feb;30(1):66-74.
    PMID: 24286257 DOI: 10.3109/02656736.2013.854930
    The emergence of thermal modalities has promoted the use of heat-sensitive phantoms for calibration, measurement, and verification purposes. However, development of durable phantoms with high precision ability to represent the temperature distribution remains a challenge. This study aims to introduce a reusable phantom that provides an accurate assessment of the heated region in various thermal modalities.
    Matched MeSH terms: Coloring Agents/radiation effects
  3. Zainal Z, Lee CY, Hussein MZ, Kassim A, Yusof NA
    J Hazard Mater, 2007 Jul 19;146(1-2):73-80.
    PMID: 17196740
    Mixed dye consists of six commercial dyes and textile effluents from cotton dyeing process were treated by electrochemical-assisted photodegradation under halogen lamp illumination. Two types of effluents were collected which are samples before and after undergone pre-treatment at the factory wastewater treatment plant. The photodegradation process was studied by evaluating the changes in concentration employing UV-vis spectrophotometer (UV-vis) and total organic carbon (TOC) analysis. The photoelectrochemical degradation of mixed dye was found to follow the Langmuir Hinshelwood pseudo-first order kinetic while pseudo-second order kinetic model for effluents by using TOC analyses. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD) values of mixed dye and raw effluents were reported. Photoelectrochemical characteristic of pollutants was studied using the cyclic voltammetry technique. Raw effluent was found to exhibit stronger reduction behaviour at cathodic bias potential but slightly less photoresponse at anodic bias than mixed dye.
    Matched MeSH terms: Coloring Agents/radiation effects*
  4. Ho LN, Ong SA, Osman H, Chong FM
    J Environ Sci (China), 2012;24(6):1142-8.
    PMID: 23505883
    Fish scale (FS) loaded TiO2 composites were investigated as photocatalysts in degradation of Methyl Orange under solar light irradiation. Composites were prepared through sol-gel method by varying mass ratio of TiO2/FS at 90:10, 70:30 and 50:50, respectively. The catalysts prepared in this study were characterized by using XRD, SEM, FT-IR and nitrogen sorption. The effects of solar irradiation, mass ratio of TiO2/FS composites, irradiation time and catalyst loadings were studied. Synergistic effect was found in TiO2/FS of 90:10 composite which performed higher photocatalytic degradation than synthesized TiO2 under solar light irradiation. However, further increasing fish scale content in the composites reduced the photocatalytic activity drastically. Under solar light irradiation, all the catalysts in this study exhibited photocatalytic activity, except TiO2/FS of 50:50 composite that only acted as a weak biosorbent without performing any photocatalytic property. Photocatalytic degradation increased with increasing catalyst loading and irradiation time but decreased with increased of initial dye concentration.
    Matched MeSH terms: Coloring Agents/radiation effects
  5. Pang YL, Abdullah AZ
    Ultrason Sonochem, 2012 May;19(3):642-51.
    PMID: 22000097 DOI: 10.1016/j.ultsonch.2011.09.007
    Sonocatalytic degradation of various organic dyes (Congo Red, Reactive Blue 4, Methyl Orange, Rhodamine B and Methylene Blue) catalyzed by powder and nanotubes TiO(2) was studied. Both catalysts were characterized using transmission electron microscope (TEM), surface analyzer, Raman spectroscope and thermal gravimetric analyzer (TGA). Sonocatalytic activity of powder and nanotubes TiO(2) was elucidated based on the degradation of various organic dyes. The former catalyst was favorable for treatment of anionic dyes, while the latter was more beneficial for cationic dyes. Sonocatalytic activity of TiO(2) nanotubes could be up to four times as compared to TiO(2) powder under an ultrasonic power of 100 W and a frequency of 42 kHz. This was associated with the higher surface area and the electrostatic attraction between dye molecules and TiO(2) nanotubes. Fourier transform-infrared spectrometer (FT-IR) was used to identify changes that occurred on the functional group in Rhodamine B molecules and TiO(2) nanotubes after the reaction. Sonocatalytic degradation of Rhodamine B by TiO(2) nanotubes apparently followed the Langmuir-Hinshelwood adsorption kinetic model with surface reaction rate of 1.75 mg/L min. TiO(2) nanotubes were proven for their high potential to be applied in sonocatalytic degradation of organic dyes.
    Matched MeSH terms: Coloring Agents/radiation effects*
  6. Abdullah AZ, Ling PY
    J Hazard Mater, 2010 Jan 15;173(1-3):159-67.
    PMID: 19740600 DOI: 10.1016/j.jhazmat.2009.08.060
    The ambient sonocatalytic degradation of congo red, methyl orange, and methylene blue by titanium dioxide (TiO(2)) catalyst at initial concentrations between 10 and 50mg/L, catalyst loadings between 1.0 and 3.0mg/L and hydrogen peroxide (H(2)O(2)) concentrations up to 600 mg/L is reported. A 20 kHz ultrasonic processor at 50 W was used to accelerate the reaction. The catalysts were exposed to heat treatments between 400 and 1000 degrees C for up to 4h to induce phase change. Sonocatalysts with small amount of rutile phase showed better sonocatalytic activity but excessive rutile phase should be avoided. TiO(2) heated to 800 degrees C for 2h showed the highest sonocatalytic activity and the degradation of dyes was influenced by their chemical structures, chemical phases and characteristics of the catalysts. Congo red exhibited the highest degradation rate, attributed to multiple labile azo bonds to cause highest reactivity with the free radicals generated. An initial concentration of 10mg/L, 1.5 g/L of catalyst loading and 450 ppm of H(2)O(2) gave the best congo red removal efficiency of above 80% in 180 min. Rate coefficients for the sonocatalytic process was successfully established and the reused catalyst showed an activity drop by merely 10%.
    Matched MeSH terms: Coloring Agents/radiation effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links