Displaying all 9 publications

Abstract:
Sort:
  1. Flaherty G, Moran B, Higgins P
    J Travel Med, 2017 05 01;24(3).
    PMID: 28881861 DOI: 10.1093/jtm/tax004
    Matched MeSH terms: Communicable Diseases, Emerging/transmission*
  2. Field HE
    Zoonoses Public Health, 2009 Aug;56(6-7):278-84.
    PMID: 19497090 DOI: 10.1111/j.1863-2378.2008.01218.x
    Nearly 75% of all emerging infectious diseases (EIDs) that impact or threaten human health are zoonotic. The majority have spilled from wildlife reservoirs, either directly to humans or via domestic animals. The emergence of many can be attributed to predisposing factors such as global travel, trade, agricultural expansion, deforestation/habitat fragmentation, and urbanization; such factors increase the interface and/or the rate of contact between human, domestic animal, and wildlife populations, thereby creating increased opportunities for spillover events to occur. Infectious disease emergence can be regarded as primarily an ecological process. The epidemiological investigation of EIDs associated with wildlife requires a trans-disciplinary approach that includes an understanding of the ecology of the wildlife species, and an understanding of human behaviours that increase risk of exposure. Investigations of the emergence of Nipah virus in Malaysia in 1999 and severe acute respiratory syndrome (SARS) in China in 2003 provide useful case studies. The emergence of Nipah virus was associated with the increased size and density of commercial pig farms and their encroachment into forested areas. The movement of pigs for sale and slaughter in turn led to the rapid spread of infection to southern peninsular Malaysia, where the high-density, largely urban pig populations facilitated transmission to humans. Identifying the factors associated with the emergence of SARS in southern China requires an understanding of the ecology of infection both in the natural reservoir and in secondary market reservoir species. A necessary extension of understanding the ecology of the reservoir is an understanding of the trade, and of the social and cultural context of wildlife consumption. Emerging infectious diseases originating from wildlife populations will continue to threaten public health. Mitigating and managing the risk requires an appreciation of the connectedness between human, livestock and wildlife health, and of the factors and processes that disrupt the balance.
    Matched MeSH terms: Communicable Diseases, Emerging/transmission*
  3. Sabbatani S, Fiorino S, Manfredi R
    Braz J Infect Dis, 2010 May-Jun;14(3):299-309.
    PMID: 20835518
    After examining the most recent scientific evidences, which assessed the role of some malaria plasmodia that have monkeys as natural reservoirs, the authors focus their attention on Plasmodium knowlesi. The infective foci attributable to this last Plasmodium species have been identified during the last decade in Malaysia, in particular in the states of Sarawak and Sabah (Malaysian Borneo), and in the Pahang region (peninsular Malaysia). The significant relevance of molecular biology assays (polymerase chain reaction, or PCR, performed with specific primers for P. knowlesi), is underlined, since the traditional microscopic examination does not offer distinguishing features, especially when the differential diagnosis with Plasmodium malariae is of concern. Furthermore, Plasmodium knowlesi disease may be responsible of fatal cases, since its clinical presentation and course is more severe compared with those caused by P. malariae, paralleling a more elevated parasitemia. The most effective mosquito vector is represented by Anopheles latens; this mosquito is a parasite of both humans and monkeys. Among primates, the natural hosts are Macaca fascicularis, M. nemestina, M. inus, and Saimiri scirea. When remarking the possible severe evolution of P. knowlesi malaria, we underline the importance of an early recognition and a timely management, especially in patients who have their first onset in Western Hospitals, after journeys in Southeast Asian countries, and eventually participated in trekking excursions in the tropical forest. When malaria-like signs and symptoms are present, a timely diagnosis and treatment become crucial. In the light of its emerging epidemiological features, P. knowlesi may be added to the reknown human malaria parasites, whith includes P. vivax, P. ovale, P. malariae, and P. falciparum, as the fifth potential ethiologic agent of human malaria. Over the next few years, it will be mandatory to support an adequate surveillance and epidemiological network. In parallel with epidemiological and health care policy studies, also an accurate appraisal of the clinical features of P. knowlesi-affected patients will be strongly needed, since some preliminary experiences seem to show an increased disease severity, associated with increased parasitemia, in parallel with the progressive increase of inter-human infectious passages of this emerging Plasmodium.
    Matched MeSH terms: Communicable Diseases, Emerging/transmission
  4. Mackenzie JS, Williams DT
    Zoonoses Public Health, 2009 Aug;56(6-7):338-56.
    PMID: 19486319 DOI: 10.1111/j.1863-2378.2008.01208.x
    The genus Flaviviridae comprises about 70 members, of which about 30 are found in southern, south-eastern and eastern Asia and Australasia. These include major pathogens such as Japanese encephalitis (JE), West Nile (WN), Murray Valley encephalitis (MVE), tick-borne encephalitis, Kyasanur Forest disease virus, and the dengue viruses. Other members are known to be associated with mild febrile disease in humans, or with no known disease. In addition, novel flaviviruses continue to be discovered, as demonstrated recently by New Mapoon virus in Australia, Sitiawan virus in Malaysia, and ThCAr virus in Thailand. About 19 of these viruses are mosquito-borne, six are tick-borne, and four have no known vector and represent isolates from rodents or bats. Evidence from phylogenetic studies suggest that JE, MVE and Alfuy viruses probably emerged in the Malaya-Indonesian region from an African progenitor virus, possibly a virus related to Usutu virus. WN virus, however, is believed to have emerged in Africa, and then dispersed through avian migration. Evidence suggests that there are at least seven genetic lineages of WN virus, of which lineage 1b spread to Australasia as Kunjin virus, lineages 1a and 5 spread to India, and lineage 6 spread to Malaysia. Indeed, flaviviruses have a propensity to spread and emerge in new geographic areas, and they represent a potential source for new disease emergence. Many of the factors associated with disease emergence are present in the region, such as changes in land use and deforestation, increasing population movement, urbanization, and increasing trade. Furthermore, because of their ecology and dependence on climate, there is a strong likelihood that global warming may significantly increase the potential for disease emergence and/or spread.
    Matched MeSH terms: Communicable Diseases, Emerging/transmission*
  5. Mackenzie JS, Field HE, Guyatt KJ
    J Appl Microbiol, 2003;94 Suppl:59S-69S.
    PMID: 12675937
    Since 1994, a number of novel viruses have been described from bats in Australia and Malaysia, particularly from fruit bats belonging to the genus Pteropus (flying foxes), and it is probable that related viruses will be found in other countries across the geographical range of other members of the genus. These viruses include Hendra and Nipah viruses, members of a new genus, Henipaviruses, within the family Paramyxoviridae; Menangle and Tioman viruses, new members of the Rubulavirus genus within the Paramyxoviridae; and Australian bat lyssavirus (ABLV), a member of the Lyssavirus genus in the family Rhabdoviridae. All but Tioman virus are known to be associated with human and/or livestock diseases. The isolation, disease associations and biological properties of the viruses are described, and are used as the basis for developing management strategies for disease prevention or control. These strategies are directed largely at disease minimization through good farm management practices, reducing the potential for exposure to flying foxes, and better disease recognition and diagnosis, and for ABLV specifically, the use of rabies vaccine for pre- and post-exposure prophylaxis. Finally, an intriguing and long-term strategy is that of wildlife immunization through plant-derived vaccination.
    Matched MeSH terms: Communicable Diseases, Emerging/transmission
  6. Vythilingam I, Lim YA, Venugopalan B, Ngui R, Leong CS, Wong ML, et al.
    Parasit Vectors, 2014;7:436.
    PMID: 25223878 DOI: 10.1186/1756-3305-7-436
    While transmission of the human Plasmodium species has declined, a significant increase in Plasmodium knowlesi/Plasmodium malariae cases was reported in Hulu Selangor, Selangor, Malaysia. Thus, a study was undertaken to determine the epidemiology and the vectors involved in the transmission of knowlesi malaria.
    Matched MeSH terms: Communicable Diseases, Emerging/transmission*
  7. Pulliam JR, Epstein JH, Dushoff J, Rahman SA, Bunning M, Jamaluddin AA, et al.
    J R Soc Interface, 2012 Jan 7;9(66):89-101.
    PMID: 21632614 DOI: 10.1098/rsif.2011.0223
    Emerging zoonoses threaten global health, yet the processes by which they emerge are complex and poorly understood. Nipah virus (NiV) is an important threat owing to its broad host and geographical range, high case fatality, potential for human-to-human transmission and lack of effective prevention or therapies. Here, we investigate the origin of the first identified outbreak of NiV encephalitis in Malaysia and Singapore. We analyse data on livestock production from the index site (a commercial pig farm in Malaysia) prior to and during the outbreak, on Malaysian agricultural production, and from surveys of NiV's wildlife reservoir (flying foxes). Our analyses suggest that repeated introduction of NiV from wildlife changed infection dynamics in pigs. Initial viral introduction produced an explosive epizootic that drove itself to extinction but primed the population for enzootic persistence upon reintroduction of the virus. The resultant within-farm persistence permitted regional spread and increased the number of human infections. This study refutes an earlier hypothesis that anomalous El Niño Southern Oscillation-related climatic conditions drove emergence and suggests that priming for persistence drove the emergence of a novel zoonotic pathogen. Thus, we provide empirical evidence for a causative mechanism previously proposed as a precursor to widespread infection with H5N1 avian influenza and other emerging pathogens.
    Matched MeSH terms: Communicable Diseases, Emerging/transmission
  8. Ochani RK, Batra S, Shaikh A, Asad A
    Infez Med, 2019 Jun 01;27(2):117-127.
    PMID: 31205033
    The Nipah virus was discovered twenty years ago, and there is considerable information available regarding the specificities surrounding this virus such as transmission, pathogenesis and genome. Belonging to the Henipavirus genus, this virus can cause fever, encephalitis and respiratory disorders. The first cases were reported in Malaysia and Singapore in 1998, when affected individuals presented with severe febrile encephalitis. Since then, much has been identified about this virus. These single-stranded RNA viruses gain entry into target cells via a process known as macropinocytosis. The viral genome is released into the cell cytoplasm via a cascade of processes that involves conformational changes in G and F proteins which allow for attachment of the viral membrane to the cell membrane. In addition to this, the natural reservoirs of this virus have been identified to be fruit bats from the genus Pteropus. Five of the 14 species of bats in Malaysia have been identified as carriers, and this virus affects horses, cats, dogs, pigs and humans. Various mechanisms of transmission have been proposed such as contamination of date palm saps by bat feces and saliva, nosocomial and human-to-human transmissions. Physical contact was identified as the strongest risk factor for developing an infection in the 2004 Faridpur outbreak. Geographically, the virus seems to favor the Indian sub-continent, Indonesia, Southeast Asia, Pakistan, southern China, northern Australia and the Philippines, as demonstrated by the multiple outbreaks in 2001, 2004, 2007, 2012 in Bangladesh, India and Pakistan as well as the initial outbreaks in Malaysia and Singapore. Multiple routes of the viremic spread in the human body have been identified such as the central nervous system (CNS) and respiratory system, while virus levels in the body remain low, detection in the cerebrospinal fluid is comparatively high. The virus follows an incubation period of 4 days to 2 weeks which is followed by the development of symptoms. The primary clinical signs include fever, headache, vomiting and dizziness, while the characteristic symptoms consist of segmental myoclonus, tachycardia, areflexia, hypotonia, abnormal pupillary reflexes and hypertension. The serum neutralization test (SNT) is the gold standard of diagnosis followed by ELISA if SNT cannot be carried out. On the other hand, treatment is supportive since there a lack of effective pharmacological therapy and only one equine vaccine is currently licensed for use. Prevention of outbreaks seems to be a more viable approach until specific therapeutic strategies are devised.
    Matched MeSH terms: Communicable Diseases, Emerging/transmission
  9. Nally JE, Arent Z, Bayles DO, Hornsby RL, Gilmore C, Regan S, et al.
    PLoS Negl Trop Dis, 2016 12;10(12):e0005174.
    PMID: 27935961 DOI: 10.1371/journal.pntd.0005174
    The greater white-toothed shrew (Crocidura russula) is an invasive mammalian species that was first recorded in Ireland in 2007. It currently occupies an area of approximately 7,600 km2 on the island. C. russula is normally distributed in Northern Africa and Western Europe, and was previously absent from the British Isles. Whilst invasive species can have dramatic and rapid impacts on faunal and floral communities, they may also be carriers of pathogens facilitating disease transmission in potentially naive populations. Pathogenic leptospires are endemic in Ireland and a significant cause of human and animal disease. From 18 trapped C. russula, 3 isolates of Leptospira were cultured. However, typing of these isolates by standard serological reference methods was negative, and suggested an, as yet, unidentified serovar. Sequence analysis of 16S ribosomal RNA and secY indicated that these novel isolates belong to Leptospira alstonii, a unique pathogenic species of which only 7 isolates have been described to date. Earlier isolations were limited geographically to China, Japan and Malaysia, and this leptospiral species had not previously been cultured from mammals. Restriction enzyme analysis (REA) further confirms the novelty of these strains since no similar patterns were observed with a reference database of leptospires. As with other pathogenic Leptospira species, these isolates contain lipL32 and do not grow in the presence of 8-azagunaine; however no evidence of disease was apparent after experimental infection of hamsters. These isolates are genetically related to L. alstonii but have a novel REA pattern; they represent a new serovar which we designate as serovar Room22. This study demonstrates that invasive mammalian species act as bridge vectors of novel zoonotic pathogens such as Leptospira.
    Matched MeSH terms: Communicable Diseases, Emerging/transmission
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links