Investigation on copepod communities in Perai river estuary was conducted from November 2005 to May 2006. Five stations were established for monthly sampling and were located from the river mouth to the upper reaches of the river. Copepod samples were collected from vertical tows using a standard zooplankton net. The Perai river estuary was slightly stratified and salinity decreases significantly from the mouth of the river towards the upper reaches of the river. A total of 28 species of copepods were recorded and comprised of 14 families, Paracalanidae, Oithonidae, Corycaeidae, Acartiidae, Calanidae, Centropagidae, Eucalanidae, Pontellidae, Pseudodiaptomidae, Tortanidae, Ectinosomatidae, Euterpinidae, Clausidiidae and Cyclopidae. A total of 10 species showed high positive affiliation towards salinity (R > 0.60), Acartia spinicauda, Euterpina acutifrons, Microsetella norvegica, Oithona nana, Oithona simplex, Paracalanus crassirostris, Paracalanus elegans, Paracalanus parvus, Pseudodiaptomus sp. and Hemicyclops sp. The copepod species Pseudodiaptomus dauglishi were negatively affiliated towards salinity (R = -0.71). The copepod assemblages classified into two distinct groups according to salinity regimes, euryhaline-polyhaline group (25 marine affiliated species) and oligohaline-mesohaline group (3 freshwater affiliated species).
The complete life cycle of a pennellid copepod Peniculus minuticaudae Shiino, 1956 is proposed based on the discovery of all post-embryonic stages together with the post-metamorphic adult females infecting the fins of threadsail filefish Stephanolepis cirrhifer (Monacanthidae) cultured in a fish farm at Ehime Prefecture, Japan. The hatching stage was the infective copepodid. The life cycle of P. minuticaudae consists of six stages separated by moults: the copepodid, four chalimi and adult. In this study, the adult males were observed frequently in precopulatory amplexus with various stages of females however, copulation occurs only between adults. Fertilized pre-metamorphic adult females carrying spermatophores may detach from the host and settle again before undergoing massive differential growth into the post-metamorphic adult female. Comparison of the life cycle of P. minuticaudae has been made with three known pennellids: Lernaeocera branchialis (Linnaeus, 1767), Cardiodectes medusaeus (Wilson, 1908) and Lernaeenicus sprattae (Sowerby, 1806). Among the compared species, P. minuticaudae is the first ectoparasitic pennellid to be discovered to complete its life cycle on a single host without any change in infection site preferences between infective copepodid and fertilized pre-metamorphic female.
Monstrilloid copepods are protelean parasites of different groups of marine benthic invertebrates. Only their first naupliar, preadult, and adult phases are planktonic. Monstrilloids are currently represented by more than 115 nominal species contained in four genera. Its taxonomic knowledge has been hampered by nomenclatural and descriptive problems derived from their peculiar ontogeny and poor definitions of taxa. One of the most important difficulties is that of matching males to females. The only reliable methods to link the sexes of a species are the confirmation of particular apomorphies shared by both sexes, finding both sexes in the same host or as a pre-copulatory male-female pair in the plankton, or by the use of molecular markers. A general overview of the morphology of the group and its life cycle is provided herein. Recently, upgraded descriptive standards have been established and the relevance of redescribing taxa based on type and museum specimens has been demonstrated. The rate of species description per decade has had several peaks between 1840 and 2010: (1971-1980, 1991-2000, 2001-2010), each related to the activity of a few researchers. An analysis of the world distribution of published records of the Monstrilloida revealed that the Northeast Atlantic is the best studied region (45% of all records), followed by the Northwestern Atlantic (17%); the least surveyed areas include regions of the southern hemisphere (less than 3%). The Northeast Atlantic region harbors the highest number of known species (32 nominal species), followed by the Caribbean Sea/Gulf of Mexico (24), the Mediterranean/Black Sea (19), Indonesia-Malaysia-Philippines region (17), Japanese waters (17), and the Brazil-Argentina area (16). Other than these generalized patterns, little can be concluded concerning the biogeography of the group. Many species records are doubtful or improbable, and purportedly cosmopolitan nominal species are being revealed as species complexes yet to be studied.
The effects of salinity, temperature, and light conditions on the reproduction and development of harpacticoid copepod, Nitocra affinis f. californica under controlled laboratory conditions were determined. Seven different salinity levels (5, 10, 15, 20, 25, 30, 35 ppt), four temperatures (20, 25, 30, 35 degrees C), three different light intensities (25, 56, 130 micromol m(-2) s(-1)) and photoperiods (24 h:0 h, 1 h:23 h, 12 h:12 h LD cycle) were employed in this study. The highest (p < 0.05) overall reproduction and fastest development time were achieved by copepods reared under 30-35 ppt salinity. The optimum temperature required for the maximum reproduction was 30 degrees C while under 30 degrees C and 35 degrees C the copepod development time was shortest (p < 0.05) compared to other temperature levels. The overall reproduction was highest (p < 0.05) and development rate of N. affinis was shortest (p < 0.05) under lowest light intensity (25 micromol m(-2) s(-1)). Continuous light (24 h:0 h LD) inhibited the egg production while, continuous darkness (1 h:23 h LD) and 12 h:12 h LD significantly favoured the overall reproductive activity of the female. Photoperiods 1 h:23 h and 12 h:12 h LD yielded highest total (p < 0.05) offspring female(-1) coupled with highest (p < 0.05) survival percentage. This study illustrated that although N. affinis can tolerate wide range of environmental conditions, prolonged exposure to subnormal environments affect its reproduction and development. This study showed that this species can be mass cultured for commercial purposes and has a potential to be used for toxicity studies due to its high reproductive performance fast development and a wide range of tolerance to environmental conditions.