Displaying all 12 publications

Abstract:
Sort:
  1. Chen CW, Rothfels CJ, Mustapeng AMA, Gubilil M, Karger DN, Kessler M, et al.
    J Plant Res, 2018 Jan;131(1):67-76.
    PMID: 28741041 DOI: 10.1007/s10265-017-0966-9
    The phylogenetic affinities of the fern genus Aenigmopteris have been the subject of considerable disagreement, but until now, no molecular data were available from the genus. Based on the analysis of three chloroplast DNA regions (rbcL, rps16-matK, and trnL-F) we demonstrate that Aenigmopteris dubia (the type species of the genus) and A. elegans are closely related and deeply imbedded in Tectaria. The other three species of genus are morphologically very similar; we therefore transfer all five known species into Tectaria. Detailed morphological comparison further shows that previously proposed diagnostic characters of Aenigmopteris fall within the range of variation of a broadly circumscribed Tectaria.
    Matched MeSH terms: DNA, Chloroplast/genetics*
  2. Ng CH, Lee SL, Tnah LH, Ng KKS, Lee CT, Diway B, et al.
    PLoS One, 2017;12(4):e0176158.
    PMID: 28430826 DOI: 10.1371/journal.pone.0176158
    The development of timber tracking methods based on genetic markers can provide scientific evidence to verify the origin of timber products and fulfill the growing requirement for sustainable forestry practices. In this study, the origin of an important Dark Red Meranti wood, Shorea platyclados, was studied by using the combination of seven chloroplast DNA and 15 short tandem repeats (STRs) markers. A total of 27 natural populations of S. platyclados were sampled throughout Malaysia to establish population level and individual level identification databases. A haplotype map was generated from chloroplast DNA sequencing for population identification, resulting in 29 multilocus haplotypes, based on 39 informative intraspecific variable sites. Subsequently, a DNA profiling database was developed from 15 STRs allowing for individual identification in Malaysia. Cluster analysis divided the 27 populations into two genetic clusters, corresponding to the region of Eastern and Western Malaysia. The conservativeness tests showed that the Malaysia database is conservative after removal of bias from population subdivision and sampling effects. Independent self-assignment tests correctly assigned individuals to the database in an overall 60.60-94.95% of cases for identified populations, and in 98.99-99.23% of cases for identified regions. Both the chloroplast DNA database and the STRs appear to be useful for tracking timber originating in Malaysia. Hence, this DNA-based method could serve as an effective addition tool to the existing forensic timber identification system for ensuring the sustainably management of this species into the future.
    Matched MeSH terms: DNA, Chloroplast/genetics
  3. Song SL, Lim PE, Phang SM, Lee WW, Hong DD, Prathep A
    BMC Res Notes, 2014;7:77.
    PMID: 24490797 DOI: 10.1186/1756-0500-7-77
    Gracilaria tenuistipitata is an agarophyte with substantial economic potential because of its high growth rate and tolerance to a wide range of environment factors. This red seaweed is intensively cultured in China for the production of agar and fodder for abalone. Microsatellite markers were developed from the chloroplast genome of G. tenuistipitata var. liui to differentiate G. tenuistipitata obtained from six different localities: four from Peninsular Malaysia, one from Thailand and one from Vietnam. Eighty G. tenuistipitata specimens were analyzed using eight simple sequence repeat (SSR) primer-pairs that we developed for polymerase chain reaction (PCR) amplification.
    Matched MeSH terms: DNA, Chloroplast/genetics*
  4. Choong CY, Wickneswari R, Norwati M, Abbott RJ
    Mol Phylogenet Evol, 2008 Sep;48(3):1238-43.
    PMID: 18280183 DOI: 10.1016/j.ympev.2008.01.004
    Matched MeSH terms: DNA, Chloroplast/genetics*
  5. Ohtani M, Kondo T, Tani N, Ueno S, Lee LS, Ng KK, et al.
    Mol Ecol, 2013 Apr;22(8):2264-79.
    PMID: 23432376 DOI: 10.1111/mec.12243
    Tropical rainforests in South-East Asia have been affected by climatic fluctuations during past glacial eras. To examine how the accompanying changes in land areas and temperature have affected the genetic properties of rainforest trees in the region, we investigated the phylogeographic patterns of a widespread dipterocarp species, Shorea leprosula. Two types of DNA markers were used: expressed sequence tag-based simple sequence repeats and chloroplast DNA (cpDNA) sequence variations. Both sets of markers revealed clear genetic differentiation between populations in Borneo and those in the Malay Peninsula and Sumatra (Malay/Sumatra). However, in the south-western part of Borneo, genetic admixture of the lineages was observed in the two marker types. Coalescent simulation based on cpDNA sequence variation suggested that the two lineages arose 0.28-0.09 million years before present and that following their divergence migration from Malay/Sumatra to Borneo strongly exceeded migration in the opposite direction. We conclude that the genetic structure of S. leprosula was largely formed during the middle Pleistocene and was subsequently modified by eastward migration across the subaerially exposed Sunda Shelf.
    Matched MeSH terms: DNA, Chloroplast/genetics
  6. Chiang TY, Chiang YC, Chen YJ, Chou CH, Havanond S, Hong TN, et al.
    Mol Ecol, 2001 Nov;10(11):2697-710.
    PMID: 11883883
    Vivipary with precocious seedlings in mangrove plants was thought to be a hindrance to long-range dispersal. To examine the extent of seedling dispersal across oceans, we investigated the phylogeny and genetic structure among East Asiatic populations of Kandelia candel based on organelle DNAs. In total, three, 28 and seven haplotypes of the chloroplast DNA (cpDNA) atpB-rbcL spacer, cpDNA trnL-trnF spacer, and mitochondrial DNA (mtDNA) internal transcribed spacer (ITS) were identified, respectively, from 202 individuals. Three data sets suggested consistent phylogenies recovering two differentiated lineages corresponding to geographical regions, i.e. northern South-China-Sea + East-China-Sea region and southern South-China-Sea region (Sarawak). Phylogenetically, the Sarawak population was closely related to the Ranong population of western Peninsula Malaysia instead of other South-China-Sea populations, indicating its possible origin from the Indian Ocean Rim. No geographical subdivision was detected within the northern geographical region. An analysis of molecular variance (AMOVA) revealed low levels of genetic differentiation between and within mainland and island populations (phiCT = 0.015, phiSC = 0.037), indicating conspicuous long-distance seedling dispersal across oceans. Significant linkage disequilibrium excluded the possibility of recurrent homoplasious mutations as the major force causing phylogenetic discrepancy between mtDNA and the trnL-trnF spacer within the northern region. Instead, relative ages of alleles contributed to non-random chlorotype-mitotype associations and tree inconsistency. Widespread distribution and random associations (chi2 = 0.822, P = 0.189) of eight hypothetical ancestral cytotypes indicated the panmixis of populations of the northern geographical region as a whole. In contrast, rare and recently evolved alleles were restricted to marginal populations, revealing some preferential directional migration.
    Matched MeSH terms: DNA, Chloroplast/genetics
  7. Tnah LH, Lee SL, Ng KK, Lee CT, Bhassu S, Othman RY
    J Hered, 2013 Jan-Feb;104(1):115-26.
    PMID: 23132907 DOI: 10.1093/jhered/ess076
    Tectonic movements, climatic oscillations, and marine transgressions during the Cenozoic have had a dramatic effect on the biota of the tropical rain forest. This study aims to reveal the phylogeography and evolutionary history of a Peninsular Malaysian endemic tropical timber species, Neobalanocarpus heimii (Dipterocarpaceae). A total of 32 natural populations of N. heimii, with 8 samples from each population were investigated. Fifteen haplotypes were identified from five noncoding chloroplast DNA (cpDNA) regions. Overall, two major genealogical cpDNA lineages of N. heimii were elucidated: a widespread southern and a northern region. The species is predicted to have survived in multiple refugia during climatic oscillations: the northwestern region (R1), the northeastern region (R2), and the southern region (R3). These putative glacial refugia exhibited higher levels of genetic diversity, population differentiation, and the presence of unique haplotypes. Recolonization of refugia R1 and R2 could have first expanded into the northern region and migrated both northeastwards and northwestwards. Meanwhile, recolonization of N. heimii throughout the southern region could have commenced from refugia R3 and migrated toward the northeast and northwest, respectively. The populations of Tersang, Pasir Raja, and Rotan Tunggal exhibited remarkably high haplotype diversity, which could have been the contact zones that have received an admixture of gene pools from the northerly and also southerly regions. As a whole, the populations of N. heimii derived from glacial refugia and contact zones should be considered in the conservation strategies in order to safeguard the long-term survival of the species.
    Matched MeSH terms: DNA, Chloroplast/genetics
  8. Ng CH, Ng KKS, Lee SL, Tnah LH, Lee CT, Zakaria NF
    Forensic Sci Int Genet, 2020 01;44:102188.
    PMID: 31648150 DOI: 10.1016/j.fsigen.2019.102188
    To inform product users about the origin of timber, the implementation of a traceability system is necessary for the forestry industry. In this study, we developed a comprehensive genetic database for the important tropical timber species Merbau, Intsia palembanica, to trace its geographic origin within peninsular Malaysia. A total of 1373 individual trees representing 39 geographically distinct populations of I. palembanica were sampled throughout peninsular Malaysia. We analyzed the samples using a combination of four chloroplast DNA (cpDNA) markers and 14 short tandem repeat (STR) markers to establish both cpDNA haplotype and STR allele frequency databases. A haplotype map was generated through cpDNA sequencing for population identification, resulting in six unique haplotypes based on 10 informative intraspecifically variable sites. Subsequently, an STR allele frequency database was developed from 14 STRs allowing individual identification. Bayesian cluster analysis divided the individuals into two genetic clusters corresponding to the northern and southern regions of peninsular Malaysia. Tests of conservativeness showed that the databases were conservative after the adjustment of the θ values to 0.2000 and 0.2900 for the northern (f = 0.0163) and southern (f = 0.0285) regions, respectively. Using self-assignment tests, we observed that individuals were correctly assigned to populations at rates of 40.54-94.12% and to the identified regions at rates of 79.80-80.62%. Both the cpDNA and STR markers appear to be useful for tracking Merbau timber originating from peninsular Malaysia. The use of these forensic tools in addition to the existing paper-based timber tracking system will help to verify the legality of the origin of I. palembanica and to combat illegal logging issues associated with the species.
    Matched MeSH terms: DNA, Chloroplast/genetics
  9. Rosazlina R, Jacobsen N, Ørgaard M, Othman AS
    PLoS One, 2021;16(1):e0239499.
    PMID: 33476321 DOI: 10.1371/journal.pone.0239499
    Natural hybridization has been considered a source of taxonomic complexity in Cryptocoryne. A combined study of DNA sequencing data from the internal transcribed spacer (ITS) of nuclear ribosomal DNA and the trnK-matK region of chloroplast DNA was used to identify the parents of Cryptocoryne putative hybrids from Peninsular Malaysia. Based on the intermediate morphology and sympatric distribution area, the plants were tentatively identified as the hybrid Cryptocoryne ×purpurea nothovar. purpurea. The plants were pollen sterile and had long been considered as hybrids, supposedly between two related and co-existing species, C. cordata var. cordata and C. griffithii. The status of C. ×purpurea nothovar. purpurea was independently confirmed by the presence of an additive ITS sequence pattern from these two parental species in hybrid individuals. An analysis of the chloroplast trnK-matK sequences showed that the hybridization is bidirectional with the putative hybrids sharing identical sequences from C. cordata var. cordata and C. griffithii, indicating that both putative parental species had been the maternal parent in different accessions.
    Matched MeSH terms: DNA, Chloroplast/genetics*
  10. Bunawan H, Yen CC, Yaakop S, Noor NM
    BMC Res Notes, 2017 Jan 26;10(1):67.
    PMID: 28126013 DOI: 10.1186/s13104-017-2379-1
    The chloroplastic trnL intron and the nuclear internal transcribed spacer (ITS) region were sequenced for 11 Nepenthes species recorded in Peninsular Malaysia to examine their phylogenetic relationship and to evaluate the usage of trnL intron and ITS sequences for phylogenetic reconstruction of this genus.
    Matched MeSH terms: DNA, Chloroplast/genetics*
  11. Muniandy K, Tan MH, Shehnaz S, Song BK, Ayub Q, Rahman S
    Planta, 2020 Feb 01;251(2):57.
    PMID: 32008119 DOI: 10.1007/s00425-020-03349-7
    MAIN CONCLUSION: The rice leaf mitochondrial DNA is  more methylated compared to the rice grain mitochondrial DNA. The old rice leaf mitochondrial DNA has also a higher methylation level than the young rice leaf mitochondrial DNA. The presence of DNA methylation in rice organelles has not been well characterized. We have previously shown that cytosine methylation of chloroplast DNA is different between leaf and grain, and varies between young and old leaves in rice. However, the variation in cytosine methylation of mitochondrial DNA is still poorly characterized. In this study, we have investigated cytosine methylation of mitochondrial DNA in the rice grain and leaf. Based on CpG, CHG, and CHH methylation analyses, the leaf mitochondrial DNA was found to be  more methylated compared to the grain mitochondrial DNA. The methylation of the leaf mitochondrial DNA was also higher in old compared to young leaves. Differences in methylation were observed at different cytosine positions of the mitochondrial DNA between grain and leaf, although there were also positions with a similar level of high methylation in all the tissues examined. The differentially methylated cytosine positions in rice mitochondrial DNA were observed mostly in the intergenic region and in some mitochondrial-specific genes involved in ATP production, transcription, and translation. The functional importance of cytosine methylation in the life cycle of rice mitochondria is still to be determined.
    Matched MeSH terms: DNA, Chloroplast/genetics
  12. Teng L, Han W, Fan X, Zhang X, Xu D, Wang Y, et al.
    Plant Mol Biol, 2021 Apr;105(6):611-623.
    PMID: 33528753 DOI: 10.1007/s11103-020-01113-9
    We applied an integrative approach using multiple methods to verify cytosine methylation in the chloroplast DNA of the multicellular brown alga Saccharina japonica. Cytosine DNA methylation is a heritable process which plays important roles in regulating development throughout the life cycle of an organism. Although methylation of nuclear DNA has been studied extensively, little is known about the state and role of DNA methylation in chloroplast genomes, especially in marine algae. Here, we have applied an integrated approach encompassing whole-genome bisulfite sequencing, methylated DNA immunoprecipitation, gene co-expression networks and photophysiological analyses to provide evidence for the role of chloroplast DNA methylation in a marine alga, the multicellular brown alga Saccharina japonica. Although the overall methylation level was relatively low in the chloroplast genome of S. japonica, gametophytes exhibited higher methylation levels than sporophytes. Gene-specific bisulfite-cloning sequencing provided additional evidence for the methylation of key photosynthetic genes. Many of them were highly expressed in sporophytes whereas genes involved in transcription, translation and biosynthesis were strongly expressed in gametophytes. Nucleus-encoded photosynthesis genes were co-expressed with their chloroplast-encoded counterparts potentially contributing to the higher photosynthetic performance in sporophytes compared to gametophytes where these co-expression networks were less pronounced. A nucleus-encoded DNA methyltransferase of the DNMT2 family is assumed to be responsible for the methylation of the chloroplast genome because it is predicted to possess a plastid transit peptide.
    Matched MeSH terms: DNA, Chloroplast/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links