Displaying all 8 publications

Abstract:
Sort:
  1. Poznanski RR, Cacha LA
    J Integr Neurosci, 2012 Dec;11(4):417-37.
    PMID: 23351050 DOI: 10.1142/S0219635212500264
    Passive dendrites become active as a result of electrostatic interactions by dielectric polarization in proteins in a segment of a dendrite. The resultant nonlinear cable equation for a cylindrical volume representation of a dendritic segment is derived from Maxwell's equations under assumptions: (i) the electric field is restricted longitudinally along the cable length; (ii) extracellular isopotentiality; (iii) quasi-electrostatic conditions; (iv) isotropic membrane and homogeneous medium with constant conductivity; and (v) protein polarization contributes to intracellular capacitive effects through a well defined nonlinear capacity-voltage characteristic; (vi) intracellular resistance and capacitance in parallel are connected to the membrane in series. Under the above hypotheses, traveling wave solutions of the cable equation are obtained as propagating fronts of electrical excitation associated with capacitive charge-equalization and dispersion of continuous polarization charge densities in an Ohmic cable. The intracellular capacitative effects of polarized proteins in dendrites contribute to the conduction process.
    Matched MeSH terms: Dendrites/physiology*
  2. Cacha LA, Poznanski RR
    J Integr Neurosci, 2011 Dec;10(4):423-37.
    PMID: 22262534
    In earlier models, synaptic plasticity forms the basis for cellular signaling underlying learning and memory. However, synaptic computation of learning and memory in the brain remains controversial. In this paper, we discuss ways in which synaptic plasticity remodels subcellular networks by deflecting trajectories in neuronal state-space as regulating patterns for the synthesis of dynamic continuity that form cognitive networks of associable representations through endogenous dendritic coding to consolidate memory.
    Matched MeSH terms: Dendrites/physiology
  3. Gadahad MR, Rao M, Rao G
    J Chin Med Assoc, 2008 Jan;71(1):6-13.
    PMID: 18218554
    BACKGROUND: Centella asiatica (CeA) is a creeper, growing in moist places in India and other Asian countries. Leaves of CeA are used for memory enhancement in the Ayurvedic system of medicine, an alternate system of medicine in India. In the present study, we investigated the role of CeA fresh leaf extract treatment on the dendritic morphology of hippocampal CA3 neurons, one of the regions concerned with learning and memory, in adult rats.

    METHODS: In the present study, adult rats (2.5 months old) were fed with 2, 4 and 6 mL/kg body weight of fresh leaf extract of CeA for 2, 4 and 6 weeks, respectively. After the treatment period, the rats were killed, brains were removed and hippocampal neurons were impregnated with silver nitrate (Golgi staining). Hippocampal CA3 neurons were traced using camera lucida, and dendritic branching points (a measure of dendritic arborization) and intersections (a measure of dendritic length) were quantified. These data were compared with those of age-matched control rats.

    RESULTS: The results showed a significant increase in the dendritic length (intersections) and dendritic branching points along the length of both apical and basal dendrites in rats treated with 6 mL/kg body weight/day of CeA for 6 weeks. However, the rats treated with 2 and 4 mL/kg body weight/day for 2 and 4 weeks did not show any significant change in hippocampal CA3 neuronal dendritic arborization.

    CONCLUSION: We conclude that constituents present in Centella asiatica fresh leaf extract has neuronal dendritic growth-stimulating properties.

    Matched MeSH terms: Dendrites/physiology
  4. Yoong LF, Lim HK, Tran H, Lackner S, Zheng Z, Hong P, et al.
    Neuron, 2020 05 06;106(3):452-467.e8.
    PMID: 32155441 DOI: 10.1016/j.neuron.2020.02.002
    Dendrite arbor pattern determines the functional characteristics of a neuron. It is founded on primary branch structure, defined through cell intrinsic and transcription-factor-encoded mechanisms. Developing arbors have extensive acentrosomal microtubule dynamics, and here, we report an unexpected role for the atypical actin motor Myo6 in creating primary branch structure by specifying the position, polarity, and targeting of these events. We carried out in vivo time-lapse imaging of Drosophila adult sensory neuron differentiation, integrating machine-learning-based quantification of arbor patterning with molecular-level tracking of cytoskeletal remodeling. This revealed that Myo6 and the transcription factor Knot regulate transient surges of microtubule polymerization at dendrite tips; they drive retrograde extension of an actin filament array that specifies anterograde microtubule polymerization and guides these microtubules to subdivide the tip into multiple branches. Primary branches delineate functional compartments; this tunable branching mechanism is key to define and diversify dendrite arbor compartmentalization.
    Matched MeSH terms: Dendrites/physiology
  5. Poznanski RR, Cacha LA, Al-Wesabi YMS, Ali J, Bahadoran M, Yupapin PP, et al.
    Sci Rep, 2017 May 31;7(1):2746.
    PMID: 28566682 DOI: 10.1038/s41598-017-01849-3
    A model of solitonic conduction in neuronal branchlets with microstructure is presented. The application of cable theory to neurons with microstructure results in a nonlinear cable equation that is solved using a direct method to obtain analytical approximations of traveling wave solutions. It is shown that a linear superposition of two oppositely directed traveling waves demonstrate solitonic interaction: colliding waves can penetrate through each other, and continue fully intact as the exact pulses that entered the collision. These findings indicate that microstructure when polarized can sustain solitary waves that propagate at a constant velocity without attenuation or distortion in the absence of synaptic transmission. Solitonic conduction in a neuronal branchlet arising from polarizability of its microstructure is a novel signaling mode of electrotonic signals in thin processes (<0.5 μm diameter).
    Matched MeSH terms: Dendrites/physiology
  6. Poznanski RR
    J Integr Neurosci, 2010 Sep;9(3):299-335.
    PMID: 21064220
    Optical imaging of dendritic calcium signals provided evidence of starburst amacrine cells exhibiting calcium bias to somatofugal motion. In contrast, it has been impractical to use a dual-patch clamp technique to record membrane potentials from both proximal dendrites and distal varicosities of starburst amacrine cells in order to unequivocally prove that they are directionally sensitive to voltage, as was first suggested almost two decades ago. This paper aims to extend the passive cable model to an active cable model of a starburst amacrine cell that is intrinsically dependent on the electrical properties of starburst amacrine cells, whose various macroscopic currents are described quantitatively. The coupling between voltage and calcium just below the membrane results in a voltage-calcium system of coupled nonlinear Volterra integral equations whose solutions must be integrated into a prescribed model for example, for a synaptic couplet of starburst amacrine cells. Networks of starburst amacrine cells play a fundamental role in the retinal circuitry underlying directional selectivity. It is suggested that the dendritic plexus of starburst amacrine cells provides the substrate for the property of directional selectivity, while directional selectivity is a property of the exclusive layerings and confinement of their interconnections within the sublaminae of the inner plexiform layer involving cone bipolar cells and directionally selective ganglion cells.
    Matched MeSH terms: Dendrites/physiology*
  7. Murthy KD, George MC, Ramasamy P, Mustapha ZA
    Indian J Exp Biol, 2013 Dec;51(12):1070-8.
    PMID: 24579372
    Mother-offspring interaction begins before birth. The foetus is particularly vulnerable to environmental insults and stress. The body responds by releasing excess of the stress hormone cortisol, which acts on glucocorticoid receptors. Hippocampus in the brain is rich in glucocorticoid receptors and therefore susceptible to stress. The stress effects are reduced when the animals are placed under a model wooden pyramid. The present study was to first explore the effects of prenatal restraint-stress on the plasma corticosterone levels and the dendritic arborisation of CA3 pyramidal neurons in the hippocampus of the offspring. Further, to test whether the pyramid environment would alter these effects, as housing under a pyramid is known to reduce the stress effects, pregnant Sprague Dawley rats were restrained for 9 h per day from gestation day 7 until parturition in a wire-mesh restrainer. Plasma corticosterone levels were found to be significantly increased. In addition, there was a significant reduction in the apical and the basal total dendritic branching points and intersections of the CA3 hippocampal pyramidal neurons. The results thus suggest that, housing in the pyramid dramatically reduces prenatal stress effects in rats.
    Matched MeSH terms: Dendrites/physiology
  8. Muslimov IA, Tuzhilin A, Tang TH, Wong RK, Bianchi R, Tiedge H
    J. Cell Biol., 2014 May 26;205(4):493-510.
    PMID: 24841565 DOI: 10.1083/jcb.201310045
    A key determinant of neuronal functionality and plasticity is the targeted delivery of select ribonucleic acids (RNAs) to synaptodendritic sites of protein synthesis. In this paper, we ask how dendritic RNA transport can be regulated in a manner that is informed by the cell's activity status. We describe a molecular mechanism in which inducible interactions of noncanonical RNA motif structures with targeting factor heterogeneous nuclear ribonucleoprotein (hnRNP) A2 form the basis for activity-dependent dendritic RNA targeting. High-affinity interactions between hnRNP A2 and conditional GA-type RNA targeting motifs are critically dependent on elevated Ca(2+) levels in a narrow concentration range. Dendritic transport of messenger RNAs that carry such GA motifs is inducible by influx of Ca(2+) through voltage-dependent calcium channels upon β-adrenergic receptor activation. The combined data establish a functional correspondence between Ca(2+)-dependent RNA-protein interactions and activity-inducible RNA transport in dendrites. They also indicate a role of genomic retroposition in the phylogenetic development of RNA targeting competence.
    Matched MeSH terms: Dendrites/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links