Displaying all 4 publications

Abstract:
Sort:
  1. Shahcheraghi SH, Aljabali AAA, Al Zoubi MS, Mishra V, Charbe NB, Haggag YA, et al.
    Life Sci, 2021 Aug 01;278:119632.
    PMID: 34019900 DOI: 10.1016/j.lfs.2021.119632
    Diabetes epidemiological quantities are demonstrating one of the most important communities' health worries. The essential diabetic difficulties are including cardiomyopathy, nephropathy, inflammation, and retinopathy. Despite developments in glucose decreasing treatments and drugs, these diabetic complications are still ineffectively reversed or prohibited. Several signaling and molecular pathways are vital targets in the new therapies of diabetes. This review assesses the newest researches about the key molecules and signaling pathways as targets of molecular pharmacology in diabetes and diseases related to it for better treatment based on molecular sciences. The disease is not cured by current pharmacological strategies for type 2 diabetes. While several drug combinations are accessible that can efficiently modulate glycemia and mitigate long-term complications, these agents do not reverse pathogenesis, and in practice, they are not established to modify the patient's specific molecular profiling. Therapeutic companies have benefited from human genetics. Genome exploration, which is agnostic to the information that exists, has revealed tens of loci that impact glycemic modulation. The physiological report has begun to examine subtypes of diseases, illustrate heterogeneity and propose biochemical therapeutic pathways.
    Matched MeSH terms: Diabetes Complications/metabolism
  2. Fui LW, Lok MPW, Govindasamy V, Yong TK, Lek TK, Das AK
    J Tissue Eng Regen Med, 2019 12;13(12):2218-2233.
    PMID: 31648415 DOI: 10.1002/term.2966
    Mesenchymal stem cells (MSCs) transplantation seems to be a promising new therapy for diabetic wound healing (DWH), and currently, arrays of MSCs from various sources ranging from umbilical, adipose to dental sources are available as a treatment modality for this disease. However, it now appears that only a fraction of transplanted cells actually assimilate and survive in host tissues suggesting that the major mechanism by which stem cells participate in tissue repair are most likely related to their secretome level. These include a wide range of growth factors, cytokines, and chemokines, which can be found from the conditioned medium (CM) used to culture the cells. Basic studies and preclinical work confirm that the therapeutic effect of CMs are comparable with the application of stem cells. This review describes in detail the wound healing process in diabetes and the cellular and biological factors that influence the process. Subsequently, through a comprehensive literature search of studies related to wound healing in diabetics, we aim to provide an overview of scientific merits of using MSCs-CM in the treatment of diabetic wound as well as the significant caveats, which restricts its potential use in clinical set-ups. To our best knowledge, this is one of the first review papers that collect the importance of stem cells as an alternative treatment to the DWH. We anticipate that the success of this treatment will have a significant clinical impact on diabetic wounds.
    Matched MeSH terms: Diabetes Complications/metabolism
  3. Benchoula K, Parhar IS, Madhavan P, Hwa WE
    Biochem Pharmacol, 2021 06;188:114531.
    PMID: 33773975 DOI: 10.1016/j.bcp.2021.114531
    Diabetes mellitus is a metabolic disorder diagnosed by elevated blood glucose levels and a defect in insulin production. Blood glucose, an energy source in the body, is regenerated by two fundamental processes: glycolysis and gluconeogenesis. These two processes are the main mechanisms used by humans and many other animals to maintain blood glucose levels, thereby avoiding hypoglycaemia. The released insulin from pancreatic β-cells activates glycolysis. However, the glucagon released from the pancreatic α-cells activates gluconeogenesis in the liver, leading to pyruvate conversion to glucose-6-phosphate by different enzymes such as fructose 1,6-bisphosphatase and glucose 6-phosphatase. These enzymes' expression is controlled by the glucagon/ cyclic adenosine 3',5'-monophosphate (cAMP)/ proteinkinase A (PKA) pathway. This pathway phosphorylates cAMP-response element-binding protein (CREB) in the nucleus to bind it to these enzyme promoters and activate their expression. During fasting, this process is activated to supply the body with glucose; however, it is overactivated in diabetes. Thus, the inhibition of this process by blocking the expression of the enzymes via CREB is an alternative strategy for the treatment of diabetes. This review was designed to investigate the association between CREB activity and the treatment of diabetes and diabetes complications. The phosphorylation of CREB is a crucial step in regulating the gene expression of the enzymes of gluconeogenesis. Many studies have proven that CREB is over-activated by glucagon and many other factors contributing to the elevation of fasting glucose levels in people with diabetes. The physiological function of CREB should be regarded in developing a therapeutic strategy for the treatment of diabetes mellitus and its complications. However, the accessible laboratory findings for CREB activity of the previous research still not strong enough for continuing to the clinical trial yet.
    Matched MeSH terms: Diabetes Complications/metabolism*
  4. Giribabu N, Kumar KE, Rekha SS, Muniandy S, Salleh N
    PMID: 25104050 DOI: 10.1186/1472-6882-14-291
    We hypothesized that C. borivilianum root, known to improve male reproductive performance, prevents impairment in characteristics, morphology and elevation of oxidative stress in sperm of diabetics. We therefore investigated the effect of aqueous root extract of C. borivilianum on these parameters in diabetic rat model.
    Matched MeSH terms: Diabetes Complications/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links