Displaying all 2 publications

Abstract:
Sort:
  1. Shrestha N, Adhikari M, Pant V, Baral S, Shrestha A, Basnyat B, et al.
    BMC Infect Dis, 2019 Feb 19;19(1):176.
    PMID: 30782129 DOI: 10.1186/s12879-019-3793-x
    BACKGROUND: Melioidosis is a life-threatening infectious disease that is caused by gram negative bacteria Burkholderia pseudomallei. This bacteria occurs as an environmental saprophyte typically in endemic regions of south-east Asia and northern Australia. Therefore, patients with melioidosis are at high risk of being misdiagnosed and/or under-diagnosed in South Asia.

    CASE PRESENTATION: Here, we report two cases of melioidosis from Nepal. Both of them were diabetic male who presented themselves with fever, multiple abscesses and developed sepsis. They were treated with multiple antimicrobial agents including antitubercular drugs before being correctly diagnosed as melioidosis. Consistent with this, both patients were farmer by occupation and also reported travelling to Malaysia in the past. The diagnosis was made consequent to the isolation of B. pseudomallei from pus samples. Accordingly, they were managed with intravenous meropenem followed by oral doxycycline and cotrimoxazole.

    CONCLUSION: The case reports raise serious concern over the existing unawareness of melioidosis in Nepal. Both of the cases were left undiagnosed for a long time. Therefore, clinicians need to keep a high index of suspicion while encountering similar cases. Especially diabetic-farmers who present with fever and sepsis and do not respond to antibiotics easily may turn out to be yet another case of melioidosis. Ascertaining the travel history and occupational history is of utmost significance. In addition, the microbiologist should be trained to correctly identify B. pseudomallei as it is often confused for other Burkholderia species. The organism responds only to specific antibiotics; therefore, correct and timely diagnosis becomes crucial for better outcomes.

    Matched MeSH terms: Diabetes Mellitus/microbiology
  2. Rozman NAS, Tong WY, Leong CR, Anuar MR, Karim S, Ong SK, et al.
    Sci Rep, 2020 02 24;10(1):3307.
    PMID: 32094395 DOI: 10.1038/s41598-020-60364-0
    Essential oil of Homalomena pineodora inhibits diabetic pathogens; however, the activity was not sustainable when applied as wound dressing. This study aims to synthesise the essential oil nanoparticle using chitosan. The nanoparticles were synthesised with ion gelation method, confirmed by spectroscopic analysis. The spherical nanoparticles display a size of 70 nm, with strong surface charge of +24.10 mV. The nanoparticles showed an initial burst release followed by a slow release pattern for 72 h, following the first order of kinetic. The release behaviour was ideal for wound dressing. The antimicrobial activity was broad spectrum. The formation of nanoparticle enhanced the antimicrobial efficacy of the essential oil. The nanoparticle also showed a concentration-dependent killing behaviour on time-kill assay. In the 3D collagen wound models, the nanoparticles reduced the microbial growth by 60-80%. In conclusion, H. pineodora nanoparticles showed pharmaceutical potential in inhibiting microbial growth on diabetic ulcers.
    Matched MeSH terms: Diabetes Mellitus/microbiology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links