Displaying all 2 publications

Abstract:
Sort:
  1. Dehghan F, Soori R, Dehghan P, Gholami K, Muniandy S, Azarbayjani MA, et al.
    PLoS One, 2016;11(8):e0160984.
    PMID: 27513858 DOI: 10.1371/journal.pone.0160984
    The changes in knee laxity and relaxin receptor expression at different phases of rodent estrous cycle are not known. Here, changes in the parameter were investigated in rats at different phases of the estrous cycle. Estrous cycle phases of intact female rats were determined by cytological examination of the vaginal smear. Following phase identification, blood was collected for serum hormone analyses. Knee passive range of motion (ROM) was determined by using a digital miniature goniometer. The animals were then sacrificed and patellar tendon, collateral ligaments and hamstring muscles were harvested for relaxin/insulin-like family peptide receptor 1 and 2 (RXFP1/RXFP2) analyses. Knee passive ROM was the highest at proestrus followed by diestrus and the lowest at estrus. Estrogen level was the highest at proestrus while progesterone and relaxin levels were the highest at diestrus. A strong correlation was observed between relaxin and progesterone levels. At proestrus, expression of RXFP1 and RXFP2 proteins and mRNAs were the highest at proestrus followed by diestrus and estrus. The finding shows that higher level of progesterone and relaxin in diestrus might be responsible for higher laxity of knee joint in rats.
    Matched MeSH terms: Diestrus
  2. Sayem ASM, Giribabu N, Karim K, Si LK, Muniandy S, Salleh N
    Biomed Pharmacother, 2018 Apr;100:132-141.
    PMID: 29428660 DOI: 10.1016/j.biopha.2018.02.008
    Sex-steroids play important role in modulating uterine functions. We hypothesized that these hormones affect expression of proteins in the uterus related to thyroid hormone action. Therefore, changes in expression levels of receptors for thyroid hormone (TRα-1 and TRβ-1), thyroid stimulating hormone (TSHR), vitamin D (VDR) and retinoid acid (RAR) as well as extracellular signal-regulated kinase (ERK1/2) in uterus were investigated under sex-steroid influence.

    METHODS: Two rat models were used: (i) ovariectomised, sex-steroid replaced and (ii) intact, at different phases of oestrous cycle. A day after completion of sex-steroid treatment or following identification of oestrous cycle phases, rats were sacrificed and expression and distribution of these proteins in uterus were identified by Western blotting and immunohistochemistry, respectively.

    RESULTS: Expression of TRα-1, TRβ-1, TSHR, VDR, RAR and ERK1/2 in uterus was higher following estradiol (E2) treatment and at estrus phase of oestrous cycle when E2levels were high. A relatively lower expression was observed following progesterone (P) treatment and at diestrus phases of oestrous cycle when P levels were high. Under E2influence, TRα, TRβ, TSHR, VDR, RAR and ERK1/2 were distributed in luminal and glandular epithelia while under P influence, TSHR, VDR abn RAR were distributed in the stroma.

    CONCLUSIONS: Differential expression and distribution of TRα-1, TRβ-1, TSHR, VDR, RAR and ERK1/2 in different uterine compartments could explain differential action of thyroid hormone, TSH, vitamin D, and retinoic acid in uterus under different sex-steroid conditions.

    Matched MeSH terms: Diestrus
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links