Displaying all 7 publications

Abstract:
Sort:
  1. Choudhury H, Pandey M, Wen LP, Cien LK, Xin H, Yee ANJ, et al.
    Curr Pharm Des, 2020;26(42):5365-5379.
    PMID: 32693762 DOI: 10.2174/1381612826666200721000958
    Breast cancer (BC) is the commonest cause of cancer deaths among Women. It is known to be caused due to mutations in certain receptors, viz. estrogens or progesterones. The most frequently used conventional treatment strategies against BC include chemotherapy, radiation therapy, and partial or entire mastectomy, however, these strategies are often associated with multiple adverse effects, thus reducing patient compliance. Advancement of nanotechnology in the medical application has been made to enhance the therapeutic effectiveness with a significant reduction in the unintended side-effects associated with incorporated anticancer drugs against cancer. The surface engineering technology of the nanocarriers is more pronounced in delivering the therapeutics specifically to target cells. Consequently, folic acid, a small molecular ligand for the folate receptor overexpressed cells, has shown immense response in treating BC cells. Folic acid conjugated nanocarriers have shown remarkable efficiency in targeting overexpressed folate receptors on the surface of BC cells. Binding of these target-specific folate-conjugated nanocarriers substantially improves the internalization of chemotherapeutics in BC cells, without much exposing the other parts of the body. Simultaneously, these folate-- conjugated nanocarriers provide imaging for regular monitoring of targeted drug delivery systems and their responses to an anticancer therapy. Therefore, this review demonstrates the potential of folate-conjugated nanotherapeutics for the treatment and theranostic approaches against BC along with the significant challenges to anticancer therapy, and the prospective insights into the clinical importance and effectiveness of folate conjugate nanocarriers.
    Matched MeSH terms: Drug Carriers/therapeutic use
  2. Madheswaran T, Kandasamy M, Bose RJ, Karuppagounder V
    Drug Discov Today, 2019 07;24(7):1405-1412.
    PMID: 31102731 DOI: 10.1016/j.drudis.2019.05.004
    Lyotropic nonlamellar liquid crystalline nanoparticles (NPs) (LCN), such as cubosomes and hexosomes, are useful tools for applications in drug delivery because of their unique structural properties. LCNs are highly versatile carriers that can be applied for use with topical, oral, and intravenous treatments. In recent years, significant research has focused on improving their preparation and characterization, including controlling drug release and enhancing the efficacy of loaded bioactive molecules. Nevertheless, the clinical translation of LCN-based carriers has been slow. In this review, we highlight recent advances and challenges in the development and application of LCN, providing examples of their topical, oral, and intravenous drug delivery applications, and discussing translational obstacles to LCN as a NP technology.
    Matched MeSH terms: Drug Carriers/therapeutic use
  3. Sepantafar M, Maheronnaghsh R, Mohammadi H, Radmanesh F, Hasani-Sadrabadi MM, Ebrahimi M, et al.
    Trends Biotechnol, 2017 11;35(11):1074-1087.
    PMID: 28734545 DOI: 10.1016/j.tibtech.2017.06.015
    Over the last decade, numerous investigations have attempted to clarify the intricacies of tumor development to propose effective approaches for cancer treatment. Thanks to the unique properties of hydrogels, researchers have made significant progress in tumor model reconstruction, tumor diagnosis, and associated therapies. Notably, hydrogel-based systems can be adjusted to respond to cancer-specific hallmarks and/or external stimuli. These well-known drug reservoirs can be used as smart carriers for multiple cargos, including both naked and nanoparticle-encapsulated chemotherapeutics, genes, and radioisotopes. Recent works have attempted to specialize hydrogels for cancer research; we comprehensively review this topic for the first time, synthesizing past results and defining paths for future work.
    Matched MeSH terms: Drug Carriers/therapeutic use*
  4. Bera H, Abbasi YF, Lee Ping L, Marbaniang D, Mazumder B, Kumar P, et al.
    Carbohydr Polym, 2020 Feb 15;230:115664.
    PMID: 31887927 DOI: 10.1016/j.carbpol.2019.115664
    Erlotinib-loaded carboxymethyl temarind gum-g-poly(N-isopropylacrylamide)-montmorillonite based semi-IPN nanocomposites were synthesized and characterized for their in vitro performances for lung cancer therapy. The placebo matrices exhibited outstanding biodegradability and pH-dependent swelling profiles. The molar mass (M¯ c) between the crosslinks of these composites was declined with temperature. The solid state characterization confirmed the semi-IPN architecture of these scaffolds. The corresponding drug-loaded formulations displayed excellent drug-trapping capacity (DEE, 86-97 %) with acceptable zeta potential (-16 to -13 mV) and diameter (967-646 nm). These formulations conferred sustained drug elution profiles (Q8h, 77-99 %) with an initial burst release. The drug release profile of the optimized formulation (F-3) was best fitted in the first order kinetic model with Fickian diffusion driven mechanism. The mucin adsorption to F-3 followed Langmuir isotherms. The results of MTT assay, AO/EB staining and confocal analyses revealed that the ERL-loaded formulation suppressed A549 cell proliferation and induced apoptosis more effectively than pristine drug.
    Matched MeSH terms: Drug Carriers/therapeutic use
  5. Samrot AV, Sean TC, Kudaiyappan T, Bisyarah U, Mirarmandi A, Faradjeva E, et al.
    Int J Biol Macromol, 2020 Dec 15;165(Pt B):3088-3105.
    PMID: 33098896 DOI: 10.1016/j.ijbiomac.2020.10.104
    Chitosan, collagen, gelatin, polylactic acid and polyhydroxyalkanoates are notable examples of biopolymers, which are essentially bio-derived polymers produced by living cells. With the right techniques, these biological macromolecules can be exploited for nanotechnological advents, including for the fabrication of nanocarriers. In the world of nanotechnology, it is highly essential (and optimal) for nanocarriers to be biocompatible, biodegradable and non-toxic for safe in vivo applications, including for drug delivery, cancer immunotherapy, tissue engineering, gene delivery, photodynamic therapy and many more. The recent advancements in understanding nanotechnology and the physicochemical properties of biopolymers allows us to modify biological macromolecules and use them in a multitude of fields, most notably for clinical and therapeutic applications. By utilizing chitosan, collagen, gelatin, polylactic acid, polyhydroxyalkanoates and various other biopolymers as synthesis ingredients, the 'optimal' properties of a nanocarrier can easily be attained. With emphasis on the aforementioned biological macromolecules, this review presents the various biopolymers utilized for nanocarrier synthesis along with their specific synthetization methods. We further discussed on the characterization techniques and related applications for the synthesized nanocarriers.
    Matched MeSH terms: Drug Carriers/therapeutic use
  6. Md S, Haque S, Madheswaran T, Zeeshan F, Meka VS, Radhakrishnan AK, et al.
    Drug Discov Today, 2017 Aug;22(8):1274-1283.
    PMID: 28456749 DOI: 10.1016/j.drudis.2017.04.010
    Topical photodynamic therapy (PDT) is a non-invasive technique used in the treatment of malignant and non-malignant skin diseases. It offers great promise because of its simplicity, enhanced patient compliance, localisation of the photosensitizer, as well as the use of light and oxygen to achieve photocytotoxicity. Despite progress in photosensitizer-mediated topical PDT, its clinical application is limited by poor penetration of photosensitizers through the skin. Therefore, much effort has been made to develop nanocarriers that can tackle the challenges of conventional photosensitizer-mediated PDT for topical delivery. This review discusses recent data on the use of different types of lipid-based nanocarriers in delivering photosensitizer for topical PDT.
    Matched MeSH terms: Drug Carriers/therapeutic use
  7. AlMatar M, Makky EA, Var I, Koksal F
    Curr Drug Deliv, 2018;15(4):470-484.
    PMID: 29219055 DOI: 10.2174/1567201815666171207163504
    BACKGROUND: Until recently, one of the main reasons for mortality has been infectious diseases, and bacteria that are drug-resistant have emerged as a result of the wide application, as well as the misuse of antibacterial medications. Having multidrug-resistance, bacteria present a great problem for the efficient management of bacterial infections and this challenge has resulted in the creation of other means of dealing with bacterial diseases. Of late, metallic nanoparticles (NPs), employed as antibacterial agents, have the potential for use against resistance to bacterial drugs.

    OBJECTIVE: The mechanisms of bacterial resistance are described in this review and this is followed by an outline of the features and uses of metallic NPs as antibiotic agents to address bacteria that are antibiotic- sensitive and resistant. Additionally, a general impression of metallic NPs as antibiofilm bactericidal agents is presented.

    CONCLUSION: Biofilms and bacterial strains that are resistant to antibiotics present a grave public health challenge and this has enhanced the need to develop new bactericidal agents. Therefore, nanomaterials are considered as a potential platform for managing bacterial infections.

    Matched MeSH terms: Drug Carriers/therapeutic use*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links