A polymerase chain reaction assay based on the enzyme-linked immunosorbent assay (PCR-ELISA) has been developed to detect Brugia malayi infection in an area of low endemicity in Malaysia. Blood samples from 239 subjects were tested: 192 amicrofilaraemic individuals, 14 microfilaraemic persons and 3 chronic elephantiasis cases from endemic areas and 30 city-dwellers (non-endemic controls). PCR products were examined by ELISA and Southern hybridization. In the PCR-ELISA, digoxigenin-labelled PCR products were hybridized to a biotin-labelled probe. This was followed by incubation in streptavidin-coated microtitre wells and detection using anti-digoxigenin-peroxidase and ABTS [2,2'-azinobis(3-ethylbenzthiazoline-6-sulphonic acid)]. All microfilaraemic samples were positive by PCR-ELISA and Southern hybridization and all samples from non-endemic subjects and chronic elephantiasis patients were negative. The PCR-ELISA detected 12 times as many B. malayi infections as did thick blood film examination. Nineteen of the 194 samples from the endemic area gave positive results by both PCR-ELISA and Southern hybridization, and an additional 5 samples were positive by PCR-ELISA only. The PCR-ELISA was specific and sensitive, detected more infections, and was more reproducible than Southern hybridization.
As lymphatic filariasis (LF) programs move closer to established targets for validation elimination of LF as a public health problem, diagnostic tools capable of supporting the needs of the programs are critical for success. Known limitations of existing diagnostic tools make it challenging to have confidence that program endpoints have been achieved. In 2019, the World Health Organization (WHO) established a Diagnostic Technical Advisory Group (DTAG) for Neglected Tropical Diseases tasked with prioritizing diagnostic needs including defining use-cases and target product profiles (TPPs) for needed tools. Subsequently, disease-specific DTAG subgroups, including one focused on LF, were established to develop TPPs and use-case analyses to be used by product developers. Here, we describe the development of two priority TPPs for LF diagnostics needed for making decisions for stopping mass drug administration (MDA) of a triple drug regimen and surveillance. Utilizing the WHO core TPP development process as the framework, the LF subgroup convened to discuss and determine attributes required for each use case. TPPs considered the following parameters: product use, design, performance, product configuration and cost, and access and equity. Version 1.0 TPPs for two use cases were published by WHO on 12 March 2021 within the WHO Global Observatory on Health Research and Development. A common TPP characteristic that emerged in both use cases was the need to identify new biomarkers that would allow for greater precision in program delivery. As LF diagnostic tests are rarely used for individual clinical diagnosis, it became apparent that reliance on population-based surveys for decision making requires consideration of test performance in the context of such surveys. In low prevalence settings, the number of false positive test results may lead to unnecessary continuation or resumption of MDA, thus wasting valuable resources and time. Therefore, highly specific diagnostic tools are paramount when used to measure low thresholds. The TPP process brought to the forefront the importance of linking use case, program platform and diagnostic performance characteristics when defining required criteria for diagnostic tools.
Brugia malayi infection is endemic in several Asian countries. Filaria-specific IgG4 antibody detection based on BmR1 recombinant antigen has been shown to be sensitive and specific for the diagnosis of brugian filariasis. Two formats of the test has been reported ie indirect ELISA (BE) and rapid dipstick test (BR). Since different test formats use different amounts of sample and reagents which may affect its sensitivity and specificity, this study was performed to compare these two test formats in the detection of B. malayi. A total of 264 blinded serum samples from India and Malaysia were employed. Group 1 comprised 164 samples from actively infected individuals and group 2 comprised 100 samples from filaria non-endemic areas. Sensitivity was 96.3% (158/164) and 90.8% (149/164) for rapid test and ELISA respectively; chi-square p=0.00. Both test formats demonstrated 100% specificity. Therefore the rapid test format was equally specific but more sensitive than the ELISA format. The ELISA format would be able to demonstrate decline in IgG4 titer post-treatment while the rapid test would be very useful for screening and diagnosis in the field.
Biotechnological tools are being used in malaria, filariasis and dengue research. The main emphasis has been on the production of reagents for immunodiagnosis and research. In this respect monoclonal antibodies (McAbs) against various species and stages of the above pathogens have been produced. It is hoped that these McAbs will be useful not only in immunodiagnosis but also for seroepidemiological applications. A DNA probe against Brugia malayi has been tested in Malaysia and was found to be sensitive and specific.
Five local Malaysian patients with clinical manifestations consistent with lymphatic filariasis were referred to our medical centre between 2003 and 2006. Although no microfilariae (mf) were detected in their nocturnal blood samples, all were diagnosed to have lymphatic filariasis on the basis of clinical findings and positive serology results. PCR on their blood samples revealed that two of the patients were infected with Brugia pahangi, an animal filarial worm hitherto not known to cause human disease in the natural environment. All the patients were successfully treated with anti-filarial drugs: four patients were treated with a combination of diethylcarbamazine (DEC) and albendazole, and one with doxycycline. Four of them were residents of Petaling Jaya, a residential suburbia located 10 km southwest of Kuala Lumpur city, Malaysia. The fifth patient was a frequent visitor of the suburbia. This suburbia has no history or record of B. malayi infection. The most likely vector of the worm was Armigeres subalbatus as extensive entomological surveys within the suburbia revealed only adult females of this mosquito species were infected with B. pahangi larvae. Wild monkeys caught in the suburbia were free from B. pahangi mf, but domestic cats were mf positive. This suggests that infected cats might be the source of the zoonotic infection in the suburbia.
Enzyme-linked immunosorbent assays (ELISAs) were developed for the detection of IgG, IgG4 and IgE antibodies against Strongyloides stercoralis. A commercial ELISA (IVD Research, USA) was also used, and the sensitivities and specificities of the four assays were determined. Serum samples from 26 patients with S. stercoralis infection and 55 patients with other infections or no infection were analysed. Sensitivities of the IgG4 , IgG, IgE and IgG (IVD) assays were 76.9%, 84.6%, 7.7% and 84.6%, respectively, while the specificities were 92.7%, 81.8%, 100% and 83.6%, respectively. If filariasis samples were excluded, the specificities of the IgG4 -ELISA and both IgG-ELISAs increased to 100% and 98%, respectively. A significant positive correlation was observed between IgG- and IgG4 -ELISAs (r = 0.4828; P = 0.0125). IgG- and IgG- (IVD) ELISAs (r = 0.309) were positively correlated, but was not significant (P = 0.124). Meanwhile there was no correlation between IgG4 - and IgG- (IVD) ELISAs (r = 0.0042; P = 0.8294). Sera from brugian filariasis patients showed weak, positive correlation between the titres of antifilarial IgG4 and the optical densities of anti-Strongyloides IgG4 -ELISA (r = 0.4544, P = 0.0294). In conclusion, the detection of both anti-Strongyloides IgG4 and IgG antibodies could improve the serodiagnosis of human strongyloidiasis. Furthermore, patients from lymphatic filariasis endemic areas who are serologically diagnosed with strongyloidiasis should also be tested for filariasis.
Sera from fifty subjects with different presentations of Brugian filariasis and from common soil-transmitted helminth infections were tested for specific anti-filarial IgG and its subclasses. Anti-filarial IgG, IgG1 and IgG3 showed cross-reactivities with soil-transmitted helminthic infections and no significant differences in optical densities among the various groups of filarial patients. In comparison with other groups of subjects, IgG4-ELISA of sera from microfilaraemic patients and some previously microfilaraemic patients showed a significant increase in optical density readings, while IgG2-ELISA showed elevated optical density readings in sera of patients with chronic elephantiasis. Therefore IgG2-ELISA is potentially useful in the diagnosis of brugian chronic elephantiasis while IgG4-ELISA may be beneficial for follow-up diagnosis of treated microfilaraemic patients.
Brugian filariasis infects 13 million people in Asia. The routine prevalence survey method using night thick blood smear is not sensitive enough to reflect the actual infection prevalence. In 1997-2001, only three microfilaraemic cases (of 5601 individuals screened; 0.05%) were reported in Pasir Mas, a district in Kelantan (Malaysia), which shares a border with Thailand. We therefore investigated the infection prevalence in this district by employing a sensitive and specific serological assay (Brugia-Elisa). This test is based on detection of specific IgG4 antibody against a Brugia malayi recombinant antigen. A total of 5138 children, aged 7-12 years, from 16 primary schools, were tested. Eighteen pupils in eight schools, located in five subdistricts, tested positive, giving an overall prevalence rate of 0.35%. Infection in these children is significant as they represent more recent cases. These subdistricts should be included in the national filariasis elimination programme.
Wuchereria bancrofti, Brugia malayi and Brugia timori are the causative agents of lymphatic filariasis in Indonesia but in some endemic areas, B malayi is more commonly found. Diagnosis of filariasis is normally based on clinical, parasitological and immunological examinations but those methods have limitations. The discovery of monoclonal antibodies is expected to provide a new dimension to the efforts in the development of specific and sensitive immunological tests for the various stages of filariasis infection. This preliminary report, using monoclonal antibodies and dot-blot assay in human lymphatic filariasis showed that 75% of sera from microfilaremic patients with clinical signs, 40% of sera from amicrofilaraemic patients with clinical signs, 88.8% of sera from microfilaremic patients without clinical signs and 19.6% of sera from amicrofilaremic patients without clinical signs have circulating antigens.
Lymphatic filariasis is a mosquito-borne parasitic disease responsible for morbidity and disability that affects 1.2 billion people worldwide, mainly the poor communities. Currently, filarial antigen testing is the method of choice for the detection of bancroftian filariasis, and to date, there are two commonly used tests. In the present study, a recently reported recombinant monoclonal antibody (5B) specific to BmSXP filarial antigen was used in developing an ELISA for the detection of circulating filarial antigen in sera of patients with bancroftian filariasis. The performance of the ELISA was evaluated using 124 serum samples. The ELISA was positive with all sera from microfilaremic bancroftian filariasis patients (n = 34). It also showed 100% diagnostic specificity when tested with sera from 50 healthy individuals and 40 patients with other parasitic diseases. The developed assay using the novel 5B recombinant monoclonal antibody could potentially be a promising alternative antigen detection test for bancroftian filariasis.
At the end phase of the Global Programme to Eliminate Lymphatic Filariasis, antibody testing may have a role in decision-making for bancroftian filariasis-endemic areas. This study evaluated the diagnostic performance of BLF Rapid™, a prototype immunochromatographic IgG4-based test using BmSXP recombinant protein, for detection of bancroftian filariasis. The test was evaluated using 258 serum samples, comprising 96 samples tested at Universiti Sains Malaysia (in-house) and 162 samples tested independently at three international laboratories in the USA and India, and two laboratories in Malaysia. The independent testing involved 99 samples from Wuchereria bancrofti microfilaria or antigen positive individuals and 63 samples from people who were healthy or had other infections. The in-house evaluation showed 100% diagnostic sensitivity and specificity. The independent evaluations showed a diagnostic sensitivity of 84-100% and 100% specificity (excluding non-lymphatic filarial infections). BLF Rapid has potential as a surveillance diagnostic tool to make "Transmission Assessment Survey"-stopping decisions and conduct post-elimination surveillance.
In Peninsular Malaysia, only Wuchereria bancrofti and Brugia malayi are reported to cause human filariasis. Brugia pahangi infects many of the same animal hosts as the zoonotically transmitted subperiodic B. malayi. There is a well-recognized need for improved diagnostic techniques for lymphatic filariasis. Parasite antigen detection is a promising new approach, and it will probably prove to be more sensitive and specific than clinical, microscopic and antibody-based serological methods. We recently generated monoclonal antibodies (MAb XC3) from in vitro culture products of adult B. pahangi (B.p. IVP). Filarial antigenemia was quantitated in various hosts including the sera from 6 Malaysian Aborigines with acute lymphatic filariasis. In hosts infected with brugian filariasis and dirofilariasis, antigenemia was scored ranging from 90 ng/ml to 960 ng/ml. None of the control animal and human sera had antigenemia above 90 ng/ml. In addition, MAb XC3 and B.p. IVP were applied in several seroepidemiological surveys among household cats in Kuala Selangor in order to correlate information gathered for future studies of possible cases of human infection. Out of the 81 cats surveyed, 10 (12.35%) and 5 (6.17%) were parasitologically positive for B. pahangi and B. malayi, respectively. However, 21 (25.92%) were antigenemia positive when serologically investigated with MAb XC3. Antifilarial antibodies to B.p. IVP by direct ELISA showed very high cross-reactivity with non-filarial gut worm infections. 16 (19.75%) cats had reciprocal titers ranging from 320 to 2,560. Only 1 (1.23%) cat from this group was antigenemic.