Displaying all 3 publications

Abstract:
Sort:
  1. Elendran S, Shiva Kumar V, Sundralingam U, Tow WK, Palanisamy UD
    Int J Pharm, 2024 Jul 20;660:124333.
    PMID: 38866080 DOI: 10.1016/j.ijpharm.2024.124333
    Geraniin (GE), an ellagitannin (ET) renowned for its promising health advantages, faces challenges in its practical applications due to its limited bioavailability. This innovative and novel formulation of GE and soy-phosphatidylcholine (GE-PL) complex has the potential to increase oral bioavailability, exhibiting high entrapment efficiency of 100.2 ± 0.8 %, and complexation efficiency of 94.6 ± 1.1 %. The small particle size (1.04 ± 0.11 μm), low polydispersity index (0.26 ± 0.02), and adequate zeta potential (-26.1 ± 0.12 mV), indicate its uniformity and stability. Moreover, the formulation also demonstrates improved lipophilicity, reduced aqueous and buffer solubilities, and better partition coefficient. It has been validated by various analytical techniques, including Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) studies. Oral bioavailability and pharmacokinetics of free GE and GE-PL complex investigated in rabbits demonstrated enhanced plasma concentration of ellagic acid (EA) compared to free GE. Significantly, GE, whether in its free form or as part of the GE-PL complex, was not found in the circulatory system. However, EA levels were observed at 0.5 h after administration, displaying two distinct peaks at 2 ± 0.03 h (T1max) and 24 ± 0.06 h (T2max). These peaks corresponded to peak plasma concentrations (C1max and C2max) of 588.82 ng/mL and 711.13 ng/mL respectively, signifying substantial 11-fold and 5-fold enhancements when compared to free GE. Additionally, it showed an increased area under the curve (AUC), the elimination half-life (t1/2, el) and the elimination rate constant (Kel). The formulation of the GE-PL complex prolonged the presence of EA in the bloodstream and improved its absorption, ultimately leading to a higher oral bioavailability. In summary, the study highlights the significance of the GE-PL complex in overcoming the bioavailability limitations of GE, paving the way for enhanced therapeutic outcomes and potential applications in drug delivery and healthcare.
    Matched MeSH terms: Ellagic Acid/administration & dosage
  2. Hussein MZ, Al Ali SH, Zainal Z, Hakim MN
    Int J Nanomedicine, 2011;6:1373-83.
    PMID: 21796241 DOI: 10.2147/IJN.S21567
    An ellagic acid (EA)-zinc layered hydroxide (ZLH) nanohybrid (EAN) was synthesized under a nonaqueous environment using EA and zinc oxide (ZnO) as the precursors. Powder X-ray diffraction showed that the basal spacing of the nanohybrid was 10.4 Å, resulting in the spatial orientation of EA molecules between the interlayers of 22.5° from z-axis with two negative charges at 8,8' position of the molecules pointed toward the ZLH interlayers. FTIR study showed that the intercalated EA spectral feature is generally similar to that of EA, but with bands slightly shifted. This indicates that some chemical bonding of EA presence between the nanohybrid interlayers was slightly changed, due to the formation of host-guest interaction. The nanohybrid is of mesopores type with 58.8% drug loading and enhanced thermal stability. The release of the drug active, EA from the nanohybrid was found to be sustained and therefore has good potential to be used as a drug controlled-release formulation. In vitro bioassay study showed that the EAN has a mild effect on the hepatocytes cells, similar to its counterpart, free EA.
    Matched MeSH terms: Ellagic Acid/administration & dosage*
  3. Fatima N, Hafizur RM, Hameed A, Ahmed S, Nisar M, Kabir N
    Eur J Nutr, 2017 Mar;56(2):591-601.
    PMID: 26593435 DOI: 10.1007/s00394-015-1103-y
    PURPOSE: The present study was undertaken to explore the possible anti-diabetic mechanism(s) of Emblica officinalis (EO) and its active constituent, ellagic acid (EA), in vitro and in vivo.

    METHOD: Neonatal streptozotocin-induced non-obese type 2 diabetic rats were treated with a methanolic extract of EO (250 or 500 mg/kg) for 28 days, and blood glucose, serum insulin, and plasma antioxidant status were measured. Insulin and glucagon immunostaining and morphometry were performed in pancreatic section, and liver TBARS and GSH levels were measured. Additionally, EA was tested for glucose-stimulated insulin secretion and glucose tolerance test.

    RESULTS: Treatment with EO extract resulted in a significant decrease in the fasting blood glucose in a dose- and time-dependent manner in the diabetic rats. It significantly increased serum insulin in the diabetic rats in a dose-dependent manner. Insulin-to-glucose ratio was also increased by EO treatment. Immunostaining of pancreas showed that EO250 increased β-cell size, but EO500 increased β-cells number in diabetic rats. EO significantly increased plasma total antioxidants and liver GSH and decreased liver TBARS. EA stimulated glucose-stimulated insulin secretion from isolated islets and decreased glucose intolerance in diabetic rats.

    CONCLUSION: Ellagic acid in EO exerts anti-diabetic activity through the action on β-cells of pancreas that stimulates insulin secretion and decreases glucose intolerance.

    Matched MeSH terms: Ellagic Acid/administration & dosage*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links