Displaying all 4 publications

Abstract:
Sort:
  1. Elaina NS, Malik AS, Shams WK, Badruddin N, Abdullah JM, Reza MF
    Clin Neuroradiol, 2018 Jun;28(2):267-281.
    PMID: 28116447 DOI: 10.1007/s00062-017-0557-0
    PURPOSE: To localize sensorimotor cortical activation in 10 patients with frontoparietal tumors using quantitative magnetoencephalography (MEG) with noise-normalized approaches.

    MATERIAL AND METHODS: Somatosensory evoked magnetic fields (SEFs) were elicited in 10 patients with somatosensory tumors and in 10 control participants using electrical stimulation of the median nerve via the right and left wrists. We localized the N20m component of the SEFs using dynamic statistical parametric mapping (dSPM) and standardized low-resolution brain electromagnetic tomography (sLORETA) combined with 3D magnetic resonance imaging (MRI). The obtained coordinates were compared between groups. Finally, we statistically evaluated the N20m parameters across hemispheres using non-parametric statistical tests.

    RESULTS: The N20m sources were accurately localized to Brodmann area 3b in all members of the control group and in seven of the patients; however, the sources were shifted in three patients relative to locations outside the primary somatosensory cortex (SI). Compared with the affected (tumor) hemispheres in the patient group, N20m amplitudes and the strengths of the current sources were significantly lower in the unaffected hemispheres and in both hemispheres of the control group. These results were consistent for both dSPM and sLORETA approaches.

    CONCLUSION: Tumors in the sensorimotor cortex lead to cortical functional reorganization and an increase in N20m amplitude and current-source strengths. Noise-normalized approaches for MEG analysis that are integrated with MRI show accurate and reliable localization of sensorimotor function.

    Matched MeSH terms: Evoked Potentials, Somatosensory*
  2. Majeed AB
    Biol Pharm Bull, 1996 Feb;19(2):203-8.
    PMID: 8850306
    A possible anti-anesthetic effect of idazoxan using the depth versus latency of cortical cellular response and somatosensory evoked potentials as indices of anesthesia was studied. With the administration of 10 mg/kg (i.p.) idazoxan, a potent and selective alpha 2-adrenoceptor antagonist, to an anesthetized rat with 1.25-1.5 g/kg (i.p.) urethane, the modal latency of somatosensory cortical responses to electrical stimulation of the forepaw (0-90 V, 1 Hz) was shortened to 87 +/- 3.6% (mean +/- S.D.; n = 3) of the baseline value. The number of units firing increased by 259 +/- 98.5% (n = 3). The combined parameter (1/L x Pi; L, latency; Pi, initial positive wave) of the somatosensory evoked potentials was enhanced to 125.0 +/- 16.2% (n = 19) versus saline (98.9 +/- 25.6%; n = 18) during the desynchronized electroencephalogram (EEG). The initial negative component (Ni) of the somatosensory cortical response was increased to 192.0 +/- 83.1% (n = 19) and 134.8 +/- 36.9% (n = 19) during the synchronized and desynchronized EEG, respectively. Thus idazoxan appears to produce effects resembling a "lightening of anesthesia." This may provide the impetus for further studies on the possibility of using alpha 2-adrenoceptor antagonists in the recovery from certain types of anesthetic agents.
    Matched MeSH terms: Evoked Potentials, Somatosensory/drug effects
  3. Tan CT, Leong S
    Singapore Med J, 1992 Dec;33(6):575-80.
    PMID: 1488664
    A study of visual evoked potential (VEP), brainstem evoked potential (BAEP) and median nerve somatosensory evoked potential (SSEP) in 26 Malaysian patients with clinically definite Multiple Sclerosis (MS). This study showed an overall high rate of abnormality, with 85% of patients for VEP, 31% for BAEP and 65% for median nerve SSEP. The rate of abnormality was particularly high for patients who were symptomatic, reaching 100% of patients for VEP, 50% of patients in BAEP, 83% of nerves for median nerve SSEP. The rate of abnormality among those who were asymptomatic was lower, varying from 32% of eyes in VEP, 27% of patients in BAEP and 31% of nerves in median nerve SSEP. Three out of 10 patients with optic spinal form of MS have abnormal BAEP. These show the usefulness of the evoked potential studies in confirming the clinical lesions as well as demonstrating subclinical involvement. The rate of abnormal evoked responses for the asymptomatic patients in this study is generally lower than that published elsewhere.
    Matched MeSH terms: Evoked Potentials, Somatosensory
  4. Hasan MS, Tan JK, Chan CYW, Kwan MK, Karim FSA, Goh KJ
    J Orthop Surg (Hong Kong), 2018 7 31;26(3):2309499018789529.
    PMID: 30058437 DOI: 10.1177/2309499018789529
    BACKGROUND: Drugs used in anesthesia can affect somatosensory evoked potential (SSEP) monitoring, which is used routinely for intraoperative monitoring of spinal cord integrity during spinal surgery.

    OBJECTIVE: The objective of this study was to determine whether combined total intravenous anesthesia (TIVA) technique with propofol/remifentanil is associated with less SSEP suppression when compared to combined volatile agent desflurane/remifentanil anesthesia during corrective scoliosis surgery at a comparable depth of anesthesia.

    DESIGN: It is a randomized controlled trial.

    SETTING: The study was conducted at the Single tertiary University Hospital during October 2014 to June 2015.

    PATIENTS: Patients who required SSEP and had no neurological deficits, and were of American Society of Anesthesiologist I and II physical status, were included. Patients who had sensory or motor deficits preoperatively and significant cardiovascular and respiratory disease were excluded. A total of 72 patients were screened, and 67 patients were randomized and allocated to two groups: 34 in desflurane/remifentanil group and 33 in TIVA group. Four patients from desflurane/remifentanil group and three from TIVA group were withdrawn due to decrease in SSEP amplitude to <0.3 µV after induction of anesthesia. Thirty patients from each group were analyzed.

    INTERVENTIONS: Sixty-seven patients were randomized to receive TIVA or desflurane/remifentanil anesthesia.

    MAIN OUTCOME MEASURES: The measurements taken were the amplitude and latency of SSEP monitoring at five different time points during surgery: before and after the induction of anesthesia, at skin incision, at pedicle screw insertion, and at rod insertion.

    RESULTS: Both anesthesia techniques, TIVA and desflurane/remifentanil, resulted in decreased amplitude and increased latencies of both cervical and cortical peaks. The desflurane/remifentanil group had a significantly greater reduction in the amplitude ( p = 0.004) and an increase in latency ( p = 0.002) of P40 compared with the TIVA group. However, there were no differences in both amplitude ( p = 0.214) and latency ( p = 0.16) in cervical SSEP between the two groups.

    CONCLUSIONS: Compared with TIVA technique, desflurane/remifentanil anesthesia caused more suppression in cortical SSEP, but not in cervical SSEP, at a comparable depth of anesthesia.

    Matched MeSH terms: Evoked Potentials, Somatosensory/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links