Displaying all 4 publications

Abstract:
Sort:
  1. Kao YW, Hsu SK, Chen JY, Lin IL, Chen KJ, Lee PY, et al.
    Int J Mol Sci, 2020 Dec 28;22(1).
    PMID: 33379248 DOI: 10.3390/ijms22010212
    Curcumin is one of the most valuable natural products due to its pharmacological activities. However, the low bioavailability of curcumin has long been a problem for its medicinal use. Large studies have been conducted to improve the use of curcumin; among these studies, curcumin metabolites have become a relatively new research focus over the past few years. Additionally, accumulating evidence suggests that curcumin or curcuminoid metabolites have similar or better biological activity than the precursor of curcumin. Recent studies focus on the protective role of plasma tetrahydrocurcumin (THC), a main metabolite of curcumin, against tumors and chronic inflammatory diseases. Nevertheless, studies of THC in eye diseases have not yet been conducted. Since ophthalmic conditions play a crucial role in worldwide public health, the prevention and treatment of ophthalmic diseases are of great concern. Therefore, the present study investigated the antioxidative, anti-inflammatory, antiangiogenic, and neuroprotective effects of THC on four major ocular diseases: age-related cataracts, glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR). While this study aimed to show curcumin as a promising potential solution for eye conditions and discusses the involved mechanistic pathways, further work is required for the clinical application of curcumin.
    Matched MeSH terms: Eye Diseases/drug therapy*
  2. Shirley Ding SL, Leow SN, Munisvaradass R, Koh EH, Bastion ML, Then KY, et al.
    Eye (Lond), 2016 Oct;30(10):1293-1309.
    PMID: 27285322 DOI: 10.1038/eye.2016.94
    Erythropoietin (EPO) is a glycoprotein hormone conventionally thought to be responsible only in producing red blood cells in our body. However, with the discovery of the presence of EPO and EPO receptors in the retinal layers, the EPO seems to have physiological roles in the eye. In this review, we revisit the role of EPO in the eye. We look into the biological role of EPO in the development of the eye and the physiologic roles that it has. Apart from that, we seek to understand the mechanisms and pathways of EPO that contributes to the therapeutic and pathological conditions of the various ocular disorders such as diabetic retinopathy, retinopathy of prematurity, glaucoma, age-related macular degeneration, optic neuritis, and retinal detachment. With these understandings, we discuss the clinical applications of EPO for treatment of ocular disorders, modes of administration, EPO formulations, current clinical trials, and its future directions.
    Matched MeSH terms: Eye Diseases/drug therapy*
  3. Dissanaike AS, Ramalingam S, Fong A, Pathmayokan S, Thomas V, Kan SP
    Am J Trop Med Hyg, 1977 Nov;26(6 Pt 1):1143-7.
    PMID: 596511
    An active worm was seen in the right eye of a 62-year-old man in Malaysia. The worm was behind the lens and attached at one end to some vitreous fibers. It was tentatively identified as an immature Dirofilaria immitis. There appear to be only five previous authentic reports of filariae in the vitreous.
    Matched MeSH terms: Eye Diseases/drug therapy
  4. Nahar N, Mohamed S, Mustapha NM, Lau S, Ishak NIM, Umran NS
    Naunyn Schmiedebergs Arch Pharmacol, 2021 Mar;394(3):457-467.
    PMID: 33047165 DOI: 10.1007/s00210-020-01989-w
    Diabetes mellitus (DM) often causes ocular disorders leading to vision loss. Metformin is commonly prescribed for type 2 diabetes. This study assessed the effect of metformin on hyperglycemic histopathological eye abnormalities and some possible pathways involved. Male rats were divided into 3 groups (N = 6), namely, healthy control, hyperglycemic non-treated control, and hyperglycemic rats treated with 200 mg/kg metformin. Two weeks after diabetes induction by an intraperitoneal streptozotocin (60 mg streptozotocin (STZ)/kg) injection, the rats develop ocular abnormalities, and metformin (200 mg/kg) treatment was administered daily. Rats underwent dilated retinal digital ophthalmoscope examination and graded for diabetic retinopathy. Rats were sacrificed at 12 weeks, and the cornea, lens, sclera, ciliary body, iris, conjunctiva, retinal, and optic nerve were examined histologically. Rats' fasting blood glucose and body weight were monitored. Serum tumor necrosis factor-α (TNF-α), vascular endothelial growth factor (VEGF), claudin-1, and glutathione/malondialdehyde ratios were analyzed. Metformin significantly attenuated diabetes-related histopathological ocular deteriorations in the cornea, lens, sclera, ciliary body, iris, conjunctiva, retina, and optic nerve partly by restoring serum TNF-α, VEGF, claudin-1, and glutathione/malondialdehyde ratios without significantly affecting the fasting blood glucose levels or body weight in these hyperglycemic rats. Metformin attenuated hyperglycemia-associated histopathological eye deteriorations, possibly partly by ameliorating vascular leakage, oxidative stress, inflammation, and neovascularization, without affecting the fasting blood glucose levels or body weights in these STZ-induced diabetic rats.
    Matched MeSH terms: Eye Diseases/drug therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links