Displaying all 3 publications

Abstract:
Sort:
  1. Hapidin H, Romli NAA, Abdullah H
    Microsc Res Tech, 2019 Nov;82(11):1928-1940.
    PMID: 31423711 DOI: 10.1002/jemt.23361
    Tannic acid (TA) is a phenolic compound that might act directly on osteoblast metabolism. The study was performed to investigate the effects of TA on the proliferation, mineralization, and morphology of human fetal osteoblast cells (hFOB 1.19). The cells were divided into TA-treated, untreated, and pamidronate-treated (control drug) groups. Half maximal effective concentration (EC50 ) values for TA and pamidronate were measured using MTT assay. The EC50 of hFOB 1.19 cells treated with TA was 2.94 M. This concentration was more effective compared to the pamidronate (15.27 M). Cell proliferation assay was performed to compare cell viability from Day 1 until Day 14. The morphology of hFOB 1.19 was observed via inverted microscope and scanning electron microscope. Calcium (Ca) and phosphate (P) were assessed using energy-dispersive X-ray (EDX) analysis. Furthermore, the mineralization of hFOB 1.19 was determined by von Kossa staining (P depositions) and Alizarin Red S staining (Ca depositions). The number of cells treated with TA was significantly higher than the two control groups at Day 10 and Day 14. The morphology of cells treated with TA was uniformly fusiform-shaped with filopodia extensions. Besides, globular-like structures of deposited minerals were observed in the TA-treated group. In line with other findings, EDX spectrum analysis confirmed the presence of Ca and P. The cells treated with TA had significantly higher percentage of both minerals at Day 3 and Day 10 compared to the two control groups. In conclusion, TA enhances cell proliferation and causes cell morphology changes, as well as improved mineralization.
    Matched MeSH terms: Fetus/cytology*
  2. Alitheen N, McClure S, McCullagh P
    Immunol Cell Biol, 2007 Jul;85(5):391-3.
    PMID: 17515929
    The first stage in Peyer's patch development in the fetal lamb is characterized by the colonization of the rudimentary Peyer's patches by precursor cells expressing the IgM surface receptor. In the fetal lamb, the spleen has been implicated as the source of gene-rearranged IgM(+) B lymphocytes. This study was intended to quantitate IgM(+) lymphocytes in the spleen, lymph nodes and liver of fetal lambs at various gestational ages between 63 and 110 days using flow cytometry. Flow-cytometric analysis revealed that IgM(+) lymphocytes were rare in the liver being consistently less than 1% at every gestational age examined. IgM(+) lymphocytes were detected in the spleen (mean 9.18%) and prescapular lymph nodes (mean 11.89%) as early as 63 days. In both spleen and lymph nodes, the highest representation of IgM(+) lymphocytes occurred between 70 and 86 days gestation. The highest mean percentage of IgM(+) lymphocytes was observed in the spleen (22.63%) and lymph nodes (17.02%) at 75 days gestation. From 98 days onwards, B-lymphocyte density gradually decreased in both spleen and prescapular lymph nodes. This study indicates that substantial populations of IgM(+) lymphocytes were present in both the spleen and prescapular lymph nodes from 70 days gestation and implies that both of these locations could be potential sources for the normal colonization of the ileal Peyer's patches.
    Matched MeSH terms: Fetus/cytology
  3. Wahgiman NA, Salim N, Abdul Rahman MB, Ashari SE
    Int J Nanomedicine, 2019;14:7323-7338.
    PMID: 31686809 DOI: 10.2147/IJN.S212635
    Background: Gemcitabine (GEM) is a chemotherapeutic agent, which is known to battle cancer but challenging due to its hydrophilic nature. Nanoemulsion is water-in-oil (W/O) nanoemulsion shows potential as a carrier system in delivering gemcitabine to the cancer cell.

    Methods: The behaviour of GEM in MCT/surfactants/NaCl systems was studied in the ternary system at different ratios of Tween 80 and Span 80. The system with surfactant ratio 3:7 of Tween 80 and Span 80 was chosen for further study on the preparation of nanoemulsion formulation due to the highest isotropic region. Based on the selected ternary phase diagram, a composition of F1 was chosen and used for optimization by using the D-optimal mixture design. The interaction variables between medium chain triglyceride (MCT), surfactant mixture Tween 80: Span 80 (ratio 3:7), 0.9 % sodium chloride solution and gemcitabine were evaluated towards particle size as a response.

    Results: The results showed that NaCl solution and GEM gave more effects on particle size, polydispersity index and zeta potential of 141.57±0.05 nm, 0.168 and -37.10 mV, respectively. The optimized nanoemulsion showed good stability (no phase separation) against centrifugation test and storage at three different temperatures. The in vitro release of gemcitabine at different pH buffer solution was evaluated. The results showed the release of GEM in buffer pH 6.5 (45.19%) was higher than GEM in buffer pH 7.4 (13.62%). The cytotoxicity study showed that the optimized nanoemulsion containing GEM induced cytotoxicity towards A549 cell and at the same time reduced cytotoxicity towards MRC5 when compared to the control (GEM solution).

    Matched MeSH terms: Fetus/cytology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links