A total of 779 samples of edible nuts (melon seeds, watermelon seeds, pumpkin seeds, and cantaloupe seeds) from Southern Punjab (Pakistan), were collected during the summer and the winter seasons. The natural occurrence of aflatoxins (AFs) and vitamin E (tocopherols) levels were investigated using HPLC. The results have shown that 180 (43.4%) of samples from the winter season and 122 (33.4%) samples from the summer season were found positive for AFs. Elevated average levels of total AFs (20.9 ± 3.10 μg/kg, dry weight) were observed in watermelon seeds without shell, and the lowest average amount (15.9 ± 3.60 μg/kg) were documented in melon seeds without shell samples from the winter season. An elevated average amount of total AFs 17.3 ± 1.50 μg/kg was found in pumpkin seeds available without a shell. The results have documented a significant difference in total AFs levels in edible seeds available with shells versus without shells (α = 0.05 & 0.01). The highest dietary intake of 6.30 μg/kg/day was found in female individuals from consuming pumpkin seeds (without shell) in the winter season. A value of 3.00 μg/kg/day was found in pumpkin seed without shell in the summer season in female individuals. The highest total tocopherol levels were 22.2 ± 7.70 ng/100 g in pumpkin seeds samples from the winter season and 14.5 ± 5.50 mg/100 g in melon seed samples from the summer season. The variation of total tocopherol levels in edible seeds among the winter and summer seasons showed a significant difference (p ≤ 0.0054), except watermelon seeds samples with non-significant differences (p ≥ 0.183).
A total of 127 and 177 seafood samples from Malaysia were analyzed for polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs), respectively. The World Health Organization-toxic-equivalency quotients (WHO-TEQ) of PCDD/Fs varied from 0.13 to 1.03 pg TEQ g(-1), whereas dl-PCBs ranged from 0.33 to 1.32 pg TEQ g(-1). Based on food-consumption data from the global environment monitoring system-food contamination monitoring and assessment programme, calculated dietary exposures to PCDD/Fs and dl-PCBs from seafood for the general population in Malaysia were 0.042 and 0.098 pg TEQ kg(-1) body weight day(-1), respectively. These estimations were quite different from the values calculated using the Malaysian food-consumption statistics (average of 0.313 and 0.676 pg TEQ kg(-1) body weight day(-1) for PCDD/Fs and PCBs, respectively). However, both of the dietary exposure estimations were lower than the tolerable daily intake recommended by WHO. Thus, it is suggested that seafood from Malaysia does not pose a notable risk to the health of the average consumer.
Matched MeSH terms: Food Contamination/statistics & numerical data
This study aimed to find the association between urinary aflatoxin M(1) level and milk and dairy products consumption. Of 160 morning urine samples collected, aflatoxin M(1) was detected in 61.3 % samples (n = 98) [mean ± SD = 0.0234 ± 0.0177 ng/mL; range = 0-0.0747 ng/mL]. Of these positive samples, 67.3 % (n = 66) had levels above the limit of detection. Respondents with intake of milk and dairy products above median (67.79 g/day) had significantly high level of AFM(1) compared to those with low intake. A significant and positive association (φ = 0.286) was found between milk and dairy products consumption and urinary aflatoxin M(1) level.
This paper examines the trend and possible contributing factors for the occurrence of the food borne diseases outbreaks in Malaysia. These diseases mainly are cholera, typhoid fever, hepatitis A, dysentery and food poisoning. The outbreaks still occur sporadically in certain high risk areas throughout the country. The incidence rate of all the other three major food borne diseases steadily declined from the year 1988 to 1997 except for food poisoning and cholera. Statistic of food poisoning from the year 1996 to 1997 showed that 66.5% of the outbreak occurred in schools whereas only 0.4% originated from the contaminated food sold at various public food outlets. The school age group is always more affected than the general population. Amongst the contributing factors identified are related to unhygienic food handling practices followed by inadequate safe water supply and poor environmental sanitation. A multisectoral approach between Ministry of Health and other government agencies or private agents needs to be undertaken in the management of the food borne diseases in order to curb the incidences of food borne diseases in Malaysia.