Displaying all 2 publications

Abstract:
Sort:
  1. Heinrichs J, Scheben A, Bechteler J, Lee GE, Schäfer-Verwimp A, Hedenäs L, et al.
    PLoS One, 2016;11(5):e0156301.
    PMID: 27244582 DOI: 10.1371/journal.pone.0156301
    Cambay amber originates from the warmest period of the Eocene, which is also well known for the appearance of early angiosperm-dominated megathermal forests. The humid climate of these forests may have triggered the evolution of epiphytic lineages of bryophytes; however, early Eocene fossils of bryophytes are rare. Here, we present evidence for lejeuneoid liverworts and pleurocarpous mosses in Cambay amber. The preserved morphology of the moss fossil is inconclusive for a detailed taxonomic treatment. The liverwort fossil is, however, distinctive; its zig-zagged stems, suberect complicate-bilobed leaves, large leaf lobules, and small, deeply bifid underleaves suggest a member of Lejeuneaceae subtribe Lejeuneinae (Harpalejeunea, Lejeunea, Microlejeunea). We tested alternative classification possibilities by conducting divergence time estimates based on DNA sequence variation of Lejeuneinae using the age of the fossil for corresponding age constraints. Consideration of the fossil as a stem group member of Microlejeunea or Lejeunea resulted in an Eocene to Late Cretaceous age of the Lejeuneinae crown group. This reconstruction is in good accordance with published divergence time estimates generated without the newly presented fossil evidence. Balancing available evidence, we describe the liverwort fossil as the extinct species Microlejeunea nyiahae, representing the oldest crown group fossil of Lejeuneaceae.
    Matched MeSH terms: Fossils/history
  2. Rose JP, Kleist TJ, Löfstrand SD, Drew BT, Schönenberger J, Sytsma KJ
    Mol Phylogenet Evol, 2018 05;122:59-79.
    PMID: 29410353 DOI: 10.1016/j.ympev.2018.01.014
    Inferring interfamilial relationships within the eudicot order Ericales has remained one of the more recalcitrant problems in angiosperm phylogenetics, likely due to a rapid, ancient radiation. As a result, no comprehensive time-calibrated tree or biogeographical analysis of the order has been published. Here, we elucidate phylogenetic relationships within the order and then conduct time-dependent biogeographical and diversification analyses by using a taxon and locus-rich supermatrix approach on one-third of the extant species diversity calibrated with 23 macrofossils and two secondary calibration points. Our results corroborate previous studies and also suggest several new but poorly supported relationships. Newly suggested relationships are: (1) holoparasitic Mitrastemonaceae is sister to Lecythidaceae, (2) the clade formed by Mitrastemonaceae + Lecythidaceae is sister to Ericales excluding balsaminoids, (3) Theaceae is sister to the styracoids + sarracenioids + ericoids, and (4) subfamilial relationships with Ericaceae suggest that Arbutoideae is sister to Monotropoideae and Pyroloideae is sister to all subfamilies excluding Arbutoideae, Enkianthoideae, and Monotropoideae. Our results indicate Ericales began to diversify 110 Mya, within Indo-Malaysia and the Neotropics, with exchange between the two areas and expansion out of Indo-Malaysia becoming an important area in shaping the extant diversity of many families. Rapid cladogenesis occurred along the backbone of the order between 104 and 106 Mya. Jump dispersal is important within the order in the last 30 My, but vicariance is the most important cladogenetic driver of disjunctions at deeper levels of the phylogeny. We detect between 69 and 81 shifts in speciation rate throughout the order, the vast majority of which occurred within the last 30 My. We propose that range shifting may be responsible for older shifts in speciation rate, but more recent shifts may be better explained by morphological innovation.
    Matched MeSH terms: Fossils/history
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links