This study endeavours to investigate the phytochemical composition, biological properties and in vivo toxicity of methanol and dichloromethane extracts of Zaleya pentandra (L.) Jeffrey. Total bioactive contents, antioxidant (phosphomolybdenum and metal chelating, DPPH, ABTS, FRAP and CUPRAC) and enzyme inhibition (cholinesterases, tyrosinase α-amylase, and α-glucosidase) potential were assessed utilizing in vitro bioassays. UHPLC-MS phytochemical profiling was carried out to identify the essential compounds. The methanol extract was found to contain highest phenolic (22.60 mg GAE/g) and flavonoid (31.49 mg QE/g) contents which correlate with its most significant radical scavenging, reducing potential and tyrosinase inhibition. The dichloromethane extract was most potent for phosphomolybdenum, ferrous chelation, α-amylase, α-glucosidase, and cholinesterase inhibition assays. UHPLC-MS analysis of methanol extract unveiled to identify 11 secondary metabolites belonging to five sub-groups, i.e., phenolic, alkaloid, carbohydrate, terpenoid, and fatty acid derivatives. Additionally, in vivo toxicity was conducted for 21 days and the methanol extract at different doses (150, 200, 250 and 300 mg/kg) was administered in experimental chicks divided into five groups each containing five individuals. Different physical, haematological and biochemical parameters along with the absolute and relative weight of visceral body organs were studied. Overall, no toxic effect was noted for the extract at tested doses.
Excessive free radical production by immune cells has been linked to cell death and tissue injury during sepsis. Peroxynitrite is a short-lived oxidant and a potent inducer of cell death that has been identified in several pathological conditions. Caffeic acid phenethyl ester (CAPE) is an active component of honeybee products and exhibits antioxidant, anti-inflammatory, and immunomodulatory activities. The present study examined the ability of CAPE to scavenge peroxynitrite in RAW 264.7 murine macrophages stimulated with lipopolysaccharide/interferon-γ that was used as an in vitro model. Conversion of 123-dihydrorhodamine to its oxidation product 123-rhodamine was used to measure peroxynitrite production. Two mouse models of sepsis (endotoxemia and cecal ligation and puncture) were used as in vivo models. The level of serum 3-nitrotyrosine was used as an in vivo marker of peroxynitrite. The results demonstrated that CAPE significantly improved the viability of lipopolysaccharide/interferon-γ-treated RAW 264.7 cells and significantly inhibited nitric oxide production, with effects similar to those observed with an inhibitor of inducible nitric oxide synthase (1400W). In addition, CAPE exclusively inhibited the synthesis of peroxynitrite from the artificial substrate SIN-1 and directly prevented the peroxynitrite-mediated conversion of dihydrorhodamine-123 to its fluorescent oxidation product rhodamine-123. In both sepsis models, CAPE inhibited cellular peroxynitrite synthesis, as evidenced by the absence of serum 3-nitrotyrosine, an in vivo marker of peroxynitrite. Thus, CAPE attenuates the inflammatory responses that lead to cell damage and, potentially, cell death through suppression of the production of cytotoxic molecules such as nitric oxide and peroxynitrite. These observations provide evidence of the therapeutic potential of CAPE treatment for a wide range of inflammatory disorders.