Lentinus edodes (shiitake mushroom) has exhibited fibrinolytic activity. We synthesized and characterized selenium nanoparticles (SeNPs) using protein precipitated from the mushroom. We also investigated the fibrinolytic activity of the SeNPs. The proteins from a crude extract of L. edodes were recovered through the use of aqueous 2-phase separation, and these we used as the capping agent in SeNP biosynthesis. We characterized the SeNPs using UV-visible spectrophotometry, field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), particle size distribution analysis, and Fourier transform infrared spectroscopy (FT-IR). The fibrinolytic capability of the SeNPs was tested through an in vitro fibrin plate assay. The UV-visible spectra showed maximal absorbance at 220 nm. FESEM images showed that the SeNPs were dispersed and did not clump. The TEM images revealed a spherical shape and average size of the SeNPs. The particle size distribution analysis confirmed the mean size of the SeNPs at 64.53 nm. A strong signal for the presence of selenium was observed in the EDX analysis. The FT-IR spectrum revealed the involvement of protein functional groups in the reduction of sel-enite. Overall, the SeNPs capped with protein from shiitake mushroom were effective as an in vitro fibrinolytic agent.
Mushrooms are high in protein content, which makes them potentially a good source of antihypertensive peptides. Among the mushrooms tested, protein extracts from Pleurotus cystidiosus (E1Pc and E5Pc) and Agaricus bisporus (E1Ab and E3Ab) had high levels of antihypertensive activity. The protein extracts were fractionated by reverse-phase high-performance liquid chromatography (RPHPLC) into six fractions. Fraction 3 from E5Pc (E5PcF3) and fraction 6 from E3Ab (E3AbF6) had the highest antihypertensive activities. SDS-PAGE analysis showed E5PcF3 consisted mainly of low molecular weight proteins, whereas E3AbF6 contained a variety of high to low molecular weight proteins. There were 22 protein clusters detected by SELDI-TOF-MS analysis with five common peaks found in E5PcF3 and E3AbF6, which had m/z values in the range of 3940-11413. This study suggests that the antihypertensive activity in the two mushroom species could be due to proteins with molecular masses ranging from 3 to 10 kDa.
The fungal insect pathogen Beauveria bassiana produces a range of insecticidal metabolites and enzymes, including chitinases and proteases, which may assist the disease progression. The enzymes often play a predominant role in the pathogenicity pathway and both chitinases and proteases have previously been shown to be important in host infection. Spray application of supernatants of B. bassiana broth cultures of an isolate from New Zealand caused significant mortality in the green peach aphid, Myzus persicae, within 24 h, demonstrating an apparent contact toxicity. Three-day-old broth cultures were the most effective, with less insect mortality seen using six-day-old broth. However, aphicidal activity increased again when treating aphids with seven-day-old broth. Cultures grew substantially better and produced more potent aphicidal cultures when cultured in media with an initial pH above 5.5. Chitinase was produced a day earlier than the serine protease Pr1, but the peak production periods of these enzymes did not correlate with the aphicidal activities of three- or six-day-old cultures. Cultures treated with EDTA or heated to inactivate the enzymes still showed strong insecticidal activity. Neither beauvericin nor bassianolide, two known insecticidal metabolites, were detected in the supernatants. Therefore the key aphicidal components of B. bassiana cultures were not associated with chitinase nor Pr1 and are yet to be identified.
Lignosus rhinocerotis (Cooke) Ryvarden (Polyporales, Basidiomycota), also known as the tiger milk mushroom, has received much interest in recent years owing to its wide-range ethnobotanical uses and the recent success in its domestication. The sclerotium is the part with medicinal value. Using two-dimensional gel electrophoresis coupled with mass spectrometry analysis, a total of 16 non-redundant, major proteins were identified with high confidence level in L. rhinocerotis sclerotium based on its genome as custom mapping database. Some of these proteins, such as the putative lectins, immunomodulatory proteins, superoxide dismutase, and aegerolysin may have pharmaceutical potential; while others are involved in nutrient mobilization and the protective antioxidant mechanism in the sclerotium. The findings from this study provide a molecular basis for future research on potential pharmacologically active proteins of L. rhinocerotis.
Pleurotus pulmonarius has been reported to have a potent remedial effect on diabetic property and considered to be an alternative for type 2 diabetes mellitus treatment. This study aimed to investigate the antidiabetic properties of ammonium sulphate precipitated protein fractions from P. pulmonarius basidiocarps. Preliminary results demonstrated that 30% (NH4)2SO4 precipitated fraction (F30) inhibited Saccharomyces cerevisiae α-glucosidase activity (24.18%), and 100% (NH4)2SO4 precipitated fraction (F100) inhibited porcine pancreatic α-amylase activity (41.80%). Following RP-HPLC purification, peak 3 from F30 fraction demonstrated inhibition towards α-glucosidase at the same time with meagre inhibition towards α-amylase activity. Characterisation of proteins using MALDI-TOF/TOF MS demonstrated the presence of four different proteins, which could be implicated in the regulation of blood glucose level via various mechanisms. Therefore, this study revealed the presence of four antidiabetic-related proteins which are profilin-like protein, glyceraldehyde-3-phosphate dehydrogenase-like protein, trehalose phosphorylase-like (TP-like) protein, and catalase-like protein. Hence, P. pulmonarius basidiocarps have high potential in lowering blood glucose level, reducing insulin resistance and vascular complications.
Fungal immunomodulatory proteins (FIPs) are fascinating small and heat-stable bioactive proteins in a distinct protein family due to similarities in their structures and sequences. They are found in fungi, including the fruiting bodies producing fungi comprised of culinary and medicinal mushrooms. Structurally, most FIPs exist as homodimers; each subunit consisting of an N-terminal α-helix dimerization and a C-terminal fibronectin III domain. Increasing numbers of identified FIPs from either different or same fungal species clearly indicates the growing research interests into its medicinal properties which include immunomodulatory, anti-inflammation, anti-allergy, and anticancer. Most FIPs increased IFN-γ production in peripheral blood mononuclear cells, potentially exerting immunomodulatory and anti-inflammatory effects by inhibiting overproduction of T helper-2 (Th2) cytokines common in an allergy reaction. Recently, FIP from Ganoderma microsporum (FIP-gmi) was shown to promote neurite outgrowth for potential therapeutic applications in neuro-disorders. This review discussed FIPs' structural and protein characteristics, their recombinant protein production for functional studies, and the recent advances in their development and applications as pharmaceutics and functional foods.