Gallic acid (GA) is a hydrophilic polyphenol which is noteworthy for strong antioxidant capacity. The drawbacks of conventional extraction approaches such as time-consuming and high processing cost are often viewed as a hurdle to extract GA from plant sources in industrial scale. Aqueous two-phase system (ATPS) is a separation approach which can be employed as an alternative to the conventional approaches. The partition behaviour of GA in an alcohol/salt ATPS was investigated in this study to aid the development of industrial scale ATPS to extract GA from natural sources. The separation of GA was characterized by determining the types of alcohol and salt, phase composition, sample load, pH of the system and addition of adjuvants applied in the alcohol/salt ATPS construction. The hydrophilic GA was targeted to the salt-rich phase of the alcohol/salt ATPS with a partition coefficient (KGA) of 25.00 ± 0.00. The optimum condition of ATPS for the maximum partition of GA was achieved in ATPS comprised of 24% (w/w) 1-propanol and 22% (w/w) phosphate salt at pH 8 with 5% (w/w) of 1 mg/mL sample loading and 2% (w/w) NaCl addition. The findings suggest that ATPS can be applied for separation of GA from various natural sources.
Punica granatum (pomegranate), an edible fruit originating in the Middle East, has been used as a traditional medicine for treatment of pain and inflammatory conditions such as peptic ulcer. The numerous risks associated with nonsteroidal anti-inflammatory drugs (NSAIDs) for treatment of pain and inflammation give rise to using medicinal herbs as alternative therapies. This study aimed to evaluate the anti-inflammatory effect of isolated compounds from the ethyl acetate (EtOAc) fraction of P. granatum by determination of their inhibitory effects on lipopolysaccharide (LPS), stimulated nitric oxide (NO), prostaglandin E2 (PGE-2), interleukin-6 (IL-6) and cyclooxxgenase-2 (COX-2) release from RAW264.7 cells.