Displaying all 4 publications

Abstract:
Sort:
  1. Jahan N, Abd Manan F, Mansoor A, Zaidi MA, Shahwani MN, Javed MA
    ScientificWorldJournal, 2018;2018:8180174.
    PMID: 30356418 DOI: 10.1155/2018/8180174
    Rice production is decreasing by abiotic stresses like heavy metals. In such circumstances, producing food for growing human population is a challenge for plant breeders. Excess of Al3+ in soil has become threat for high yield of rice. Improvement of crop is one of potential solution for high production. The aim of this study was to develop the new method for optimization of Al3+ toxicity tolerance in indica rice at germination stag using two-way ANOVA and Duncan's multiple-range test (DMRT). Seeds of two indica rice cultivars (Pokkali and Pak Basmati) were exposed in different concentrations (control, 5 mM, 15 mM, and 20 mM) of Al3+ toxicity at pH 4 ±0.2 for two weeks. Germination traits such as final germination percentage (FG%), germination energy (GE), germination speed (GS), germination index (GI), mean time of germination (MGT), germination value (GV), germination velocity (GVe), peak value of germination (GPV), and germination capacity (GC) and growth traits such as root length (RL), shoot length (SL), total dry biomass (TDB), and germination vigour index (GVI) were measured. To obtain the maximum number of significance (≤ 0.01%) parameters in each concentration of Al3+ toxicity with control, two-way ANOVA was established and comparison of mean was done using DMRT. The results showed that 5 mM, 10 mM, and 15 mM have less significant effects on the above-mentioned parameters. However, 20 mM concentration of Al3+ produced significant effects (≤ 0.01%). Therefore, 20 mM of Al3+ is considered optimized limit for indica cultivars (Pokkali and Pak Basmati).
    Matched MeSH terms: Germination/physiology
  2. Makeen MA, Noor NM, Dussert S, Clyde MM
    Cryo Letters, 2005 Jul-Aug;26(4):259-68.
    PMID: 19827255
    Following the investigation of desiccation sensitivity and freezing tolerance of the whole seed of Citrus suhuiensis cv. limau langkat, desiccation sensitivity and cryopreservation of the excised embryonic axes from the seeds of the same species were examined. Three drying conditions were employed: desiccation by equilibrium for the whole seeds and desiccation in laminar airflow and over silica gel for the excised embryonic axes. The relevance of desiccation sensitivity (WC50) to cryopreservation of whole seeds and excised axes was investigated. High desiccation tolerance (WC50 = 0.034 g H2O x g(-1)dw) was acquired for axes desiccated with faster dehydration rate (1.5 g x g(-1) x h(-1)) in laminar airflow compared to substantially lower desiccation tolerance (WC50 = 0.132 and 0.110 g H2O x g(-1)dw) acquired under slower dehydration rates (1.0 and 0.005 g x g(-1) x h(-1)) for axes desiccated over silica gel and whole seeds desiccated by equilibrium respectively. While few whole seeds (8.3%) survived freezing, high recovery percentages of axes (83.3% and 62.2%) after freezing were obtained under laminar airflow and silica gel drying conditions respectively. Irrespective of the drying method employed, axes survival percentages after exposure to LN temperature commensurate with the desiccation sensitivity pattern. For the whole seeds, a factor other than desiccation sensitivity that limits the tolerance to exposure to LN temperature seems to exist and still needs to be defined.
    Matched MeSH terms: Germination/physiology
  3. Hakim MA, Juraimi AS, Hanafi MM, Selamat A, Ismail MR, Karim SM
    J Environ Biol, 2011 Sep;32(5):529-36.
    PMID: 22319865
    An investigation was made to see the salt tolerance of 10 weed species of rice. Properly dried and treated seeds of weed species were placed on 9 cm diameter petridishes lined with Whatman No. 1 filter paper under 6 salinity regimes, viz. 0 (control), 4, 8, 16, 24 and 32 dS m(-1). The petri dishes were then kept in germinator at 25 +/- 1.0 degrees C and 12 hr light. The number of germinated seeds were recorded daily. The final germination percentage, germination index (GI), seedling vigour index, mean germination time and time for 50% germination were estimated. Root and shoot lengths of the weed seedlings were measured at 20 days after salt application and relative growth values were calculated. Results revealed that salinity decreased final germination percentage, seed of germination as measured by GI, and shoot and root length in all the species. Germination of most of the weed seeds was completely arrested (0) at 32 dS m(-1) salinity except in E. colona (12%) and C. iria (13.9%). The species C. iria, E. colona, J. linifolia and E. crusgalli showed better germination (above 30%) upto 24 dS m(-1) salinity level and were regarded as salt-tolerant weed species. J. linifolia, F. miliacea, L. chinensis and O. sativa L. (weedy rice) were graded as moderately tolerant and S. zeylanica, S. grosus and C. difformis were regarded as least tolerant weed species.
    Matched MeSH terms: Germination/physiology
  4. Prasad TNVKV, Adam S, Visweswara Rao P, Ravindra Reddy B, Giridhara Krishna T
    IET Nanobiotechnol, 2017 Apr;11(3):277-285.
    PMID: 28476985 DOI: 10.1049/iet-nbt.2015.0122
    Advancement in materials synthesis largely depends up on their diverse applications and commercialisation. Antifungal effects of phytogenic silver nanoparticles (AgNPs) were evident, but the reports on the effects of the same on agricultural crops are scant. Herein, we report for the first time, size dependent effects of phytogenic AgNPs (synthesised using Stevia rebaudiana leaf extract) on the germination, growth and biochemical parameters of three important agricultural crops viz., rice (Oryza sativa L), maize (Zea mays L) and peanut (Arachis hypogaea L). AgNPs with varied sizes were prepared by changing the concentration and quantity of the Stevia rebaudiana leaf extract. As prepared AgNPs were characterized using the techniques, such as high-resolution transmission electron microscopy, particle size and zeta potential analyser. The measured (dynamic light scattering technique) average sizes of particles are ranging from 68.5 to 116 nm. Fourier transform infrared studies confirmed the participation of alcohols, aldehydes and amides in the reduction and stabilisation of the AgNPs. Application of these AgNPs to three agricultural crop seeds (rice, maize and peanut) resulted in size dependent effects on their germination, growth and biochemical parameters such as, chlorophyll content, carotenoid and protein content. Further, antifungal activity of AgNPs also evaluated against fungi, Aspergillus niger.
    Matched MeSH terms: Germination/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links