Displaying all 3 publications

Abstract:
Sort:
  1. Erejuwa OO, Sulaiman SA, Wahab MS
    Int J Biol Sci, 2012;8(6):913-34.
    PMID: 22811614 DOI: 10.7150/ijbs.3697
    Diabetes mellitus remains a burden worldwide in spite of the availability of numerous antidiabetic drugs. Honey is a natural substance produced by bees from nectar. Several evidence-based health benefits have been ascribed to honey in the recent years. In this review article, we highlight findings which demonstrate the beneficial or potential effects of honey in the gastrointestinal tract (GIT), on the gut microbiota, in the liver, in the pancreas and how these effects could improve glycemic control and metabolic derangements. In healthy subjects or patients with impaired glucose tolerance or diabetes mellitus, various studies revealed that honey reduced blood glucose or was more tolerable than most common sugars or sweeteners. Pre-clinical studies provided more convincing evidence in support of honey as a potential antidiabetic agent than clinical studies did. The not-too-impressive clinical data could mainly be attributed to poor study designs or due to the fact that the clinical studies were preliminary. Based on the key constituents of honey, the possible mechanisms of action of antidiabetic effect of honey are proposed. The paper also highlights the potential impacts and future perspectives on the use of honey as an antidiabetic agent. It makes recommendations for further clinical studies on the potential antidiabetic effect of honey. This review provides insight on the potential use of honey, especially as a complementary agent, in the management of diabetes mellitus. Hence, it is very important to have well-designed, randomized controlled clinical trials that investigate the reproducibility (or otherwise) of these experimental data in diabetic human subjects.
    Matched MeSH terms: Glucose Intolerance/drug therapy
  2. Kanagasabapathy G, Kuppusamy UR, Abd Malek SN, Abdulla MA, Chua KH, Sabaratnam V
    PMID: 23259700 DOI: 10.1186/1472-6882-12-261
    BACKGROUND: Pleurotus sajor-caju (P. sajor-caju) has been extremely useful in the prevention of diabetes mellitus due to its low fat and high soluble fiber content for thousands of years. Insulin resistance is a key component in the development of diabetes mellitus which is caused by inflammation. In this study, we aimed to investigate the in vivo efficacy of glucan-rich polysaccharide of P. sajor-caju (GE) against diabetes mellitus and inflammation in C57BL/6J mice fed a high-fat diet.
    METHODS: Diabetes was induced in C57BL/6J mice by feeding a high-fat diet. The mice were randomly assigned to 7 groups (n=6 per group). The control groups in this study were ND (for normal diet) and HFD (for high-fat diet). The treated groups were ND240 (for normal diet) (240 mg/kg b.w) and HFD60, HFD120 and HFD240 (for high-fat), where the mice were administrated with three dosages of GE (60, 120, 240 mg GE/kg b.w respectively). Metformin (2 mg/kg b.w) served as positive control. The glucose tolerance test, glucose and insulin levels were measured at the end of 16 weeks. Expressions of genes for inflammatory markers, GLUT-4 and adiponectin in the adipose tissue of the mice were assessed. One-way ANOVA and Duncan's multiple range tests (DMRT) were used to determine the significant differences between groups.
    RESULTS: GE treated groups improved the glucose tolerance, attenuated hyperglycemia and hyperinsulinemia in the mice by up-regulating the adiponectin and GLUT-4 gene expressions. The mice in GE treated groups did not develop insulin resistance. GE also down-regulated the expression of inflammatory markers (IL-6, TNF-α, SAA2, CRP and MCP-1) via attenuation of nuclear transcription factors (NF-κB).
    CONCLUSION: Glucan-rich polysaccharide of P. sajor-caju can serve as a potential agent for prevention of glucose intolerance, insulin resistance and inflammation.
    Matched MeSH terms: Glucose Intolerance/drug therapy
  3. Rahman S, Ismail AA, Ismail SB, Naing NN, Abdul Rahman AR
    Eur J Clin Pharmacol, 2007 Aug;63(8):733-41.
    PMID: 17565489 DOI: 10.1007/s00228-007-0315-3
    OBJECTIVE: To investigate whether pharmacological interventions with rosiglitazone/ramipril can reverse preclinical vasculopathy in newly diagnosed untreated patients with type 2 diabetes (T2DM) and impaired glucose tolerance (IGT).

    METHODS: In this randomised, double-blind, placebo-controlled study, 33 T2DM and 33 IGT patients were randomised to 4 mg rosiglitazone or 5 mg ramipril or placebo for 1 year. The subjects were newly diagnosed, untreated, normotensive, nonobese, nonsmoker, and nonhyperlipidaemic. Haemodynamic variables were measured at three treatment phases and pulse wave velocity (PWV) and augmentation index (AI) were measured throughout the treatment period.

    RESULTS: Rosiglitazone showed a significant reduction in PWV (p=0.039) and AI (p=0.031) and ramipril demonstrated a significant reduction of AI (p=0.025) in IGT in comparison to placebo on the 12th month of treatment. No significant difference was observed in PWV and AI in T2DM with rosiglitazone/ramipril in comparison to placebo during overall treatment period.

    CONCLUSIONS: Rosiglitazone significantly reversed preclinical vasculopathy in IGT as evident by significant decrease in PWV and AI after 1 year of treatment. Ramipril also reduced large artery stiffness as shown by significant decrease of AI after 1 year of treatment in IGT. Further trials are needed for a longer period of time, maybe with higher doses, to show whether rosiglitazone/ramipril can reverse preclinical vasculopathy in T2DM.
    Matched MeSH terms: Glucose Intolerance/drug therapy*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links