The jungle habitat of the Temuan aborigines harbors a variety of infectious diseases, the most notable being malaria. Our study of 15 genetic systems in the Temuan revealed substantial polymorphism and within-population genetic diversity. The polymorphisms for Hb beta, G6PD, and El are of interest in regard to genetic adaptation to malaria. Among the polymorphisms investigated we conclude that G6PD deficiency and elliptocytosis are likely to have malaria-resistant effects as evidenced by their low association with malarial parasitemia or their higher frequency in adults than in children. These findings suggest that the malarial habitat of the Temuans is livable in the long range sense for them because of the cluster of malaria-resistant alleles in their gene pool (G6PD)-, El, and possibly, but not tested here because of its low frequency, Hb beta E). The same condition probably holds for the Semai, the nearest aborigine neighbors of the Temuan (although the Semai have not been tested for malarial parasitemia and for these polymorphisms simultaneously), since the Semai have substantial Hb betaE, G6PD-, and El. The Temuan have a cultural identity system of rituals, beliefs, and certain aspects of language which effectively isolates them genetically from Malays and other nonaborigines. This system hinders the dilution of the malaria-resistant alleles of the Temuan gene pool with the malaria-susceptible alleles of the nonaborigine gene pools.
The Land and Sea Dayaks of Sarawak were surveyed for several erythrocyte enzymes. The gene frequency of 6PGDC in 132 Land Dayaks and 127 Sea Dayaks were 0.045 and 0.047, respectively. The gene frequency of PGM1-1 IN 285 Land Dayks and 240 Sea Dayaks were 0.716 and 0.779, respectively. The ADA2 gene frequency in 283 Land Dayaks and 188 Sea Dayaks were 0.154 and 0.090. ADA 5-1 was found once in the Land Dayaks and once in the Sea Dayaks. AK 2-1 was found once in 221 Sea Dayaks but not in any of 270 Land Dayaks. No PHI, LDH or CA variants were found among the Land or Sea Dayaks.
Samples from 378 Chinese and 259 Malay blood donors in Singapore have been studied for electrophoretic variants in 13 red cell enzyme systems and for abnormal haemoglobins. Variants were detected in 8 of the enzyme systems, and the frequencies were polymorphic for acid phosphatase, 6 phosphogluconate dehydrogenase phosphoglucomutase (locus 1) among both Chinese and Malays, and for adenylate kinase also among Malays. Rare variants were detected in the phosphohexose, NADH diaphorase and lactate dehydrogenase systems. A new GPGD phenotype and three new LDH phenotypes have been described. Electrophoretic variants of haemoglobin were more frequent among Malays than among Chinese.