Displaying all 6 publications

Abstract:
Sort:
  1. Kamaruddin K, Illias RM, Aziz SA, Said M, Hassan O
    Biotechnol Appl Biochem, 2005 Apr;41(Pt 2):117-25.
    PMID: 15202937
    Results from the present study have shown that the ionic species of buffers, pH values and reaction temperature can affect the enzyme unit activities and product specificity of Toruzyme (Novo Nordisk A/S Bagsvaerd, Denmark) CGTase (cyclodextrin glucanotransferase). Applying a similar reaction environment (acetate buffer, pH 6.0; temperature, 60 degrees C), the CGTase was found to be capable of producing pre dominantly beta-cyclodextrin from either raw or gelatinized sago (Cycas revoluta) starch. Changing the buffer from acetate to phosphate reduced the yield of beta-cyclodextrin from 2.48 to 1.42 mg/ml and also affected the product specificity, where production of both alpha- and beta-cyclodextrins were more pronounced. The decrease in the production of cyclodextrins in phosphate buffer was significant at both pH 6.0 and 7.0. However, changing the buffer to Tris/HCl (pH 7.0) showed a significant increase in beta-cyclodextrin production. Increasing the ionic strength of sodium acetate and Tris/HCl buffers at pH 6.0 and 7.0 to equivalent ionic strength of phosphate buffers showed no significant effects on cyclodextrin production. Higher yield of cyclodextrins at pH 7.0 when Tris/HCl was used might be due to the binding of chloride ions at the calcium-binding sites of the CGTase, resulting in the shift of the optimum pH close to physiological environment, leading to an increase in the activities and specificity.
    Matched MeSH terms: Glucosyltransferases/chemistry
  2. Goh PH, Illias RM, Goh KM
    Int J Mol Sci, 2012;13(5):5307-23.
    PMID: 22754298 DOI: 10.3390/ijms13055307
    Studies related to the engineering of calcium binding sites of CGTase are limited. The calcium binding regions that are known for thermostability function were subjected to site-directed mutagenesis in this study. The starting gene-protein is a variant of CGTase Bacillus sp. G1, reported earlier and denoted as "parent CGTase" herein. Four CGTase variants (S182G, S182E, N132R and N28R) were constructed. The two variants with a mutation at residue 182, located adjacent to the Ca-I site and the active site cleft, possessed an enhanced thermostability characteristic. The activity half-life of variant S182G at 60 °C was increased to 94 min, while the parent CGTase was only 22 min. This improvement may be attributed to the formation of a shorter α-helix and the alleviation of unfavorable steric strains by glycine at the corresponding region. For the variant S182E, an extra ionic interaction at the A/B domain interface increased the half-life to 31 min, yet it reduced CGTase activity. The introduction of an ionic interaction at the Ca-I site via the mutation N132R disrupted CGTase catalytic activity. Conversely, the variant N28R, which has an additional ionic interaction at the Ca-II site, displayed increased cyclization activity. However, thermostability was not affected.
    Matched MeSH terms: Glucosyltransferases/chemistry*
  3. Saallah S, Naim MN, Mokhtar MN, Abu Bakar NF, Gen M, Lenggoro IW
    Enzyme Microb Technol, 2014 Oct;64-65:52-9.
    PMID: 25152417 DOI: 10.1016/j.enzmictec.2014.06.002
    In this study, the potential of electrohydrodynamic atomization or electrospraying to produce nanometer-order CGTase particles from aqueous suspension was demonstrated. CGTase enzyme was prepared in acetate buffer solution (1% v/v), followed by electrospraying in stable Taylor cone-jet mode. The deposits were collected on aluminium foil (collector) at variable distances from the tip of spraying needle, ranging from 10 to 25 cm. The Coulomb fission that occurs during electrospraying process successfully transformed the enzyme to the solid state without any functional group deterioration. The functional group verification was conducted by FTIR analysis. Comparison between the deposit and the as-received enzyme in dry state indicates almost identical spectra. By increasing the distance of the collector from the needle tip, the average particle size of the solidified enzyme was reduced from 200±117 nm to 75±34 nm. The average particle sizes produced from the droplet fission were in agreement with the scaling law models. Enzyme activity analysis showed that the enzyme retained its initial activity after the electrospraying process. The enzyme particles collected at the longest distance (25 cm) demonstrated the highest enzyme activity, which indicates that the activity was controlled by the enzyme particle size.
    Matched MeSH terms: Glucosyltransferases/chemistry*
  4. Subramaniam M, Baradaran A, Rosli MI, Rosfarizan M, Khatijah Y, Raha AR
    J. Mol. Microbiol. Biotechnol., 2012;22(6):361-72.
    PMID: 23295307 DOI: 10.1159/000343921
    Cyclodextrin glucanotransferase (CGTase) is an extracellular enzyme which catalyzes the formation of cyclodextrin from starch. The production of CGTase using lactic acid bacterium is an attractive alternative and safer strategy to produce CGTase. In this study, we report the construction of genetically modified Lactococcus lactis strains harboring plasmids that secrete the Bacillus sp. G1 β-CGTase, with the aid of the signal peptides (SPs) SPK1, USP45 and native SP (NSP). Three constructed vectors, pNZ:NSP:CGT, pNZ:USP:CGT and pNZ:SPK1:CGT, were developed in this study. Each vector harbored a different SP fused to the CGTase. The formation of halo zones on starch plates indicated the production and secretion of β-CGTase by the recombinants. The expression of this enzyme is shown by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and zymogram analysis. A band size of ∼75 kDa corresponding to β-CGTase is identified in the intracellular and the extracellular environments of the host after medium modification. The replacement of glucose by starch in the medium was shown to induce β-CGTase production in L. lactis. Although β-CGTase production is comparatively low in NZ:SPK1:CGT, the SP SPK1 was shown to have higher secretion efficiency compared to the other SPs used in this study.
    Matched MeSH terms: Glucosyltransferases/chemistry
  5. Ismail A, Illias RM
    J Ind Microbiol Biotechnol, 2017 Dec;44(12):1627-1641.
    PMID: 28921081 DOI: 10.1007/s10295-017-1980-6
    The excretion of cyclodextrin glucanotransferase (CGTase) into the culture medium offers significant advantages over cytoplasmic expression. However, the limitation of Escherichia coli is its inability to excrete high amount of CGTase outside the cells. In this study, modification of the hydrophobic region of the N1R3 signal peptide using site-saturation mutagenesis improved the excretion of CGTase. Signal peptide mutants designated M9F, V10L and A15Y enhanced the excretion of CGTase three-fold and demonstrated two-fold higher secretion rate than the wild type. However, high secretion rate of these mutants was non-productive for recombinant protein production because it caused up to a seven-fold increase in cell death compared to the wild type. Our results indicated that the excretion of CGTase is highly dependent on hydrophobicity, secondary conformation and the type and position of amino acids at the region boundary and core segment of the h-region.
    Matched MeSH terms: Glucosyltransferases/chemistry
  6. Ramli N, Abd-Aziz S, Alitheen NB, Hassan MA, Maeda T
    Mol Biotechnol, 2013 Jul;54(3):961-8.
    PMID: 23338983 DOI: 10.1007/s12033-013-9647-7
    Regulation of RNA transcription in controlling the expression of genes at promoter and terminator regions is crucial as the interaction of RNA polymerase occurred at both sites. Gene encoding cyclodextrin glycosyltransferase (CGTase) from Bacillus sp. NR5 UPM isolated in the previous study was used for further construction of pTZCGT-SS, pTZCGT-BS and pTZCGT-BT expression systems for enhancement of CGTase production. The putative promoter regions, -35 and -10 sequences were found in the upstream of the mature gene start codon. Whereas, long inverted repeats sequences which can form a stable stem and loop structure was found downstream of the open reading frame (ORF) of Bacillus sp. NR5 UPM CGTase. The construction of E. coli strain harbouring pTZCGT-BS showed increment of 3.2-fold in CGTase activity compared to the wild type producer. However, insertion of terminator downstream of CGTase gene in E. coli strain harbouring pTZCGT-BT only resulted in 4.42 % increment of CGTase production compared to E. coli strain containing pTZCGT-BS, perhaps due to low intrinsic termination efficiency. Thus, it is suggested that the insertion of the putative promoter regions upstream of the coding sequence for the construction of CGTase expression system will further enhance in the recombinant enzyme production.
    Matched MeSH terms: Glucosyltransferases/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links