Displaying all 3 publications

Abstract:
Sort:
  1. Mahmoudian MR, Basirun WJ, Woi PM, Yousefi R, Alias Y
    Anal Bioanal Chem, 2019 Jan;411(2):517-526.
    PMID: 30498983 DOI: 10.1007/s00216-018-1476-x
    We report a green synthesis of oatmeal ZnO/silver composites in the presence of L-glutamine as an electrochemical sensor for Pb2+ detection. The synthesis was performed via the direct reduction of Ag+ in the presence of L-glutamine in NaOH. X-ray diffraction indicated that the Ag+ was completely reduced to metallic Ag. The field emission scanning electron microscopy (FESEM) and energy dispersive X-ray results confirmed an oatmeal-like morphology of the ZnO with the presence of Ag. The FESEM images showed the effect of L-glutamine on the ZnO morphology. The EIS results confirmed a significant decrease in the charge transfer resistance of the modified glassy carbon electrode due to the presence of Ag. From the differential pulse voltammetry results, a linear working range for the concentration of Pb2+ between 5 and 6 nM with LOD of 0.078 nM (S/N = 3) was obtained. The sensitivity of the linear segment is 1.42 μA nM-1 cm-2. The presence of L-glutamine as the capping agent and stabilizer decreases the size of Ag nanoparticles and prevents the agglomeration of ZnO, respectively. Graphical abstract ᅟ.
    Matched MeSH terms: Glutamine/chemistry*
  2. Daniali G, Jinap S, Sanny M, Tan CP
    Food Chem, 2018 Apr 15;245:1-6.
    PMID: 29287315 DOI: 10.1016/j.foodchem.2017.10.070
    This work investigated the underlying formation of acrylamide from amino acids in frying oils during high temperatures and at different times via modeling systems. Eighteen amino acids were used in order to determine which one was more effective on acrylamide production. Significantly the highest amount of acrylamide was produced from asparagine (5987.5µg/kg) and the lowest from phenylalanine (9.25µg/kg). A constant amount of asparagine and glutamine in palm olein and soy bean oils was heated up in modelling system at different temperatures (160, 180 and 200°C) and times (1.5, 3, 4.5, 6, 7.5min). The highest amount of acrylamide was found at 200°C for 7.5min (9317 and 8511µg/kg) and lowest at 160°C for 1.5min (156 and 254µg/kg) in both frying oils and both amino acids. Direct correlations have been found between time (R2=0.884), temperature (R2=0.951) and amount of acrylamide formation, both at p<0.05.
    Matched MeSH terms: Glutamine/chemistry
  3. Ibeji CU, Salleh NAM, Sum JS, Ch'ng ACW, Lim TS, Choong YS
    Sci Rep, 2020 11 03;10(1):18925.
    PMID: 33144641 DOI: 10.1038/s41598-020-75799-8
    Pulmonary tuberculosis, caused by Mycobacterium tuberculosis, is one of the most persistent diseases leading to death in humans. As one of the key targets during the latent/dormant stage of M. tuberculosis, isocitrate lyase (ICL) has been a subject of interest for new tuberculosis therapeutics. In this work, the cleavage of the isocitrate by M. tuberculosis ICL was studied using quantum mechanics/molecular mechanics method at M06-2X/6-31+G(d,p): AMBER level of theory. The electronic embedding approach was applied to provide a better depiction of electrostatic interactions between MM and QM regions. Two possible pathways (pathway I that involves Asp108 and pathway II that involves Glu182) that could lead to the metabolism of isocitrate was studied in this study. The results suggested that the core residues involved in isocitrate catalytic cleavage mechanism are Asp108, Cys191 and Arg228. A water molecule bonded to Mg2+ acts as the catalytic base for the deprotonation of isocitrate C(2)-OH group, while Cys191 acts as the catalytic acid. Our observation suggests that the shuttle proton from isocitrate hydroxyl group C(2) atom is favourably transferred to Asp108 instead of Glu182 with a lower activation energy of 6.2 kcal/mol. Natural bond analysis also demonstrated that pathway I involving the transfer of proton to Asp108 has a higher intermolecular interaction and charge transfer that were associated with higher stabilization energy. The QM/MM transition state stepwise catalytic mechanism of ICL agrees with the in vitro enzymatic assay whereby Asp108Ala and Cys191Ser ICL mutants lost their isocitrate cleavage activities.
    Matched MeSH terms: Glutamine/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links