Displaying all 5 publications

Abstract:
Sort:
  1. Ai H, Lee YY, Xie X, Tan CP, Ming Lai O, Li A, et al.
    Food Chem, 2023 Jun 30;412:135558.
    PMID: 36716631 DOI: 10.1016/j.foodchem.2023.135558
    Palm olein (POL) was modified by enzymatic interesterification with different degrees of acyl migration in a solvent-free packed bed reactor. The fatty acid and acylglycerol composition, isomer content, thermodynamic behavior, and relationship between crystal polymorphism, solid fat content (SFC), crystal microstructure, and texture before and after modification were studied. We found that the increase in sn-2 saturation interesterification was not only due to the generated tripalmitin (PPP) but also caused by acyl migration, and the SFC profiles were changed accordingly. The emergence of high melting point acylglycerols was an important factor accelerating the crystallization rate, further shortening the crystallization induction time, leading to the formation of large crystal spherulites, thereby reducing the hardness. The transformation from the β' to the β form occurred during post-hardening during storage. The isomer content also affected the physicochemical properties of the modified POL.
    Matched MeSH terms: Glycerides/chemistry; Triglycerides/chemistry
  2. Peh KK, Wong CF, Yuen KH
    Drug Dev Ind Pharm, 2000 Apr;26(4):447-50.
    PMID: 10769787
    Lipophilicity was evaluated as a possible mechanism for drug retardation from a glyceryl monostearate matrix system. Lipophilicity of the glyceryl monostearate matrix system was studied using contact angle measurement of water droplets on the surface of compressed disks, extrudate ascension of water, and movement of water through a powder mixture packed in a high-performance liquid chromatographic (HPLC) column. Increase in glyceryl monostearate content resulted in an increase in water droplet contact angle, decrease in the rate of water ascending the extrudate, and increase in the pressure values as a function of flow rate of water moving through the powder mixture. These could be due to the increase in lipophilicity of the matrix, rendering the matrix less wettable. As a result, the rate of water penetration into the matrix decreased, and the drug release could be sustained.
    Matched MeSH terms: Glycerides/chemistry
  3. Peh KK, Lim CP, Quek SS, Khoh KH
    Pharm Res, 2000 Nov;17(11):1384-8.
    PMID: 11205731
    PURPOSE: To use artificial neural networks for predicting dissolution profiles of matrix-controlled release theophylline pellet preparation, and to evaluate the network performance by comparing the predicted dissolution profiles with those obtained from physical experiments using similarity factor.

    METHODS: The Multi-Layered Perceptron (MLP) neural network was used to predict the dissolution profiles of theophylline pellets containing different ratios of microcrystalline cellulose (MCC) and glyceryl monostearate (GMS). The concepts of leave-one-out as well as a time-point by time-point estimation basis were used to predict the rate of drug release for each matrix ratio. All the data were used for training, except for one set which was selected to compare with the predicted output. The closeness between the predicted and the reference dissolution profiles was investigated using similarity factor (f2).

    RESULTS: The f2 values were all above 60, indicating that the predicted dissolution profiles were closely similar to the dissolution profiles obtained from physical experiments.

    CONCLUSION: The MLP network could be used as a model for predicting the dissolution profiles of matrix-controlled release theophylline pellet preparation in product development.

    Matched MeSH terms: Glycerides/chemistry
  4. Khurana RK, Beg S, Burrow AJ, Vashishta RK, Katare OP, Kaur S, et al.
    Eur J Pharm Biopharm, 2017 Dec;121:42-60.
    PMID: 28887099 DOI: 10.1016/j.ejpb.2017.09.001
    The aim of this study was to develop polyunsaturated fatty acid (PUFA) long chain glyceride (LCG) enriched self-nanoemulsifying lipidic nanomicelles systems (SNELS) for augmenting lymphatic uptake and enhancing oral bioavailability of docetaxel and compare its biopharmaceutical performance with a medium-chain fatty acid glyceride (MCG) SNELS. Equilibrium solubility and pseudo ternary phase studies facilitated the selection of suitable LCG and MCG. The critical material attributes (CMAs) and critical process parameters (CPPs) were earmarked using Placket-Burman Design (PBD) and Fractional Factorial Design (FFD) for LCG- and MCG-SNELS respectively, and nano micelles were subsequently optimized using I- and D-optimal designs. Desirability function unearthed the optimized SNELS with Temul <5min, Dnm <100nm, Rel15min >85% and Perm45min >75%. The SNELS demonstrated efficient biocompatibility and energy dependent cellular uptake, reduced P-gp efflux and increased permeability using bi-directional Caco-2 model. Optimal PUFA enriched LCG-SNELS exhibited distinctly superior permeability and absorption parameters during ex vivo permeation, in situ single pass intestinal perfusion, lymphatic uptake and in vivo pharmacokinetic studies over MCG-SNELS.
    Matched MeSH terms: Glycerides/chemistry
  5. Eid AM, El-Enshasy HA, Aziz R, Elmarzugi NA
    Int J Nanomedicine, 2014;9:4685-95.
    PMID: 25336948 DOI: 10.2147/IJN.S66180
    There is an increasing trend among pharmaceutical industries to use natural bioactive materials as medicinal agents and to use new technologies such as self-nanoemulsifying systems. The solubility and bioavailability of poorly soluble drugs can be enhanced by self-nanoemulsifying systems. Swietenia oil is frequently used because of its antimicrobial, antimutagenic, and anticancer bioactive medical properties. This study was conducted to develop self-nanoemulsifying systems for Swietenia oil that will enhance the anti-inflammatory activity of the oil. The self-emulsifying systems developed for Swietenia oil in this study were constructed using ternary phase diagrams and contained the nonionic surfactants Labrasol(®), Tween 20, Capmul(®), and Labrafil(®). The effect of these surfactants on the formulation was examined. The mean droplet size of Swietenia oil as well as their distribution, appearance, viscosity, and spreading times were studied to find the optimum formula, which contained droplets that were less than 200 nm. The next step was to test the anti-inflammatory properties of the optimum formula using a carrageenan-induced rat paw edema test. The results from this test were compared to the oil solution. Different oil/surfactants mixtures had various emulsification properties that were related to the size of their droplets. Tween 20 is a good surfactant to use in self-emulsifying systems because it produces droplets of nano-size. Mixtures of Capmul/Labrasol at a ratio of 2:1 and Labrafil/Tween 20 at a ratio of 1:2 were able to produce self-nanoemulsifying formulations containing Swietenia oil concentrations that ranged from 20%-50%. Nanoemulsion occurred when the size of the droplets fell below 200 nm with low size distribution (<0.3) after being gently mixed with water. It was found that the hydrophilic/lipophilic balance value affected the ternary phase diagram behavior of Swietenia oil and surfactants. In addition, the anti-inflammatory properties of Swietenia oil were greater in the self-nanoemulsifying systems than in the oil solution.
    Matched MeSH terms: Glycerides/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links