Displaying all 3 publications

Abstract:
Sort:
  1. Kuze N, Malim TP, Kohshima S
    Am J Primatol, 2005 Apr;65(4):353-76.
    PMID: 15834889
    Orangutans display remarkable developmental changes and sexual differences in facial morphology, such as the flanges or cheek-pads that develop only on the face of dominant adult males. These changes suggest that facial morphology is an important factor in visual communication. However, developmental changes in facial morphology have not been examined in detail. We studied developmental changes in the facial morphology of the Borneo orangutan (Pongo pygmaeus) by observing 79 individuals of various ages living in the Sepilok Orangutan Rehabilitation Centre (SORC) in Malaysia and in Japanese zoos. We also analyzed photographs of one captive male that were taken over a period of more than 16 years. There were clear morphological changes that occurred with growth, and we identified previously unreported sexual and developmental differences in facial morphology. Light-colored skin around the eyes and mouth is most prominent in animals younger than 3 years, and rapidly decreases in area through the age of approximately 7 years. At the same time, the scattered, erect hairs on the head (infant hair) become thick, dense hairs lying on the head (adult hair) in both sexes. The results suggest that these features are infant signals, and that adult signals may include darkened face color, adult hair, whiskers, and a beard, which begin to develop after the age of approximately 7 years in both sexes. In females, the eyelids remain white even after 10 years, and turn black at around the age of 20; in males, the eyelids turn black before the age of 10. The whiskers and beards of adults are thicker in males than in females, and are fully developed before the age of 10 in males, while they begin to develop in females only after approximately 20 years. White eyelids and undeveloped whiskers and beards may be visual signals that are indicative of young adult females. Our results also show that the facial morphology of the unflanged male is similar to that of the adult female, although it has also been pointed out that unflanged males resemble younger individuals.
    Matched MeSH terms: Hair/growth & development
  2. Moqaddasi HR, Singh A, Mukherjee S, Rezai F, Gupta A, Srivastava S, et al.
    J Recept Signal Transduct Res, 2025 Apr;45(2):95-106.
    PMID: 39964119 DOI: 10.1080/10799893.2025.2465240
    Hair follicle growth process through several well-organized stages with specific input by several signaling pathways including Wnt/β-catenin and Sonic Hedgehog with GSK3β in this process. As such, this research focus on investigating the efficacy of molecules that are able to inhibit GSK3β action in inducing hair regrowth. Applying computational techniques, three compounds NMN, Resveratrol and EGCG were analyzed for their GSK3β inhibition. It was established that EGCG has the highest values of molecular docking scores and, in the case of the stability criteria such as RMSD and RMSF, presented the most stable dynamic simulation. EGCG has shown considerable TEMPORAL STABILITY with GSK3β in the complex, because over a period of 200 nanoseconds the molecules remained bound through hydrogen bonds and hydrophobic contacts. As confirmed by PCA, the largest conformational changes in GSK3β suggest significant inhibitory interaction. Out of all the studied compounds, EGCG turns out to be the most potent GSK3β inhibitor for hair regrowth purposes. The result obtained from the molecular dynamics simulation indicates that EGCG might exert a favorable impact to extract signaling pathways related with hair follicle cycling which is a significant objective. These outcome sets the phase for further experimental testing to discover the potential of EGCG in the treatment of alopecia.
    Matched MeSH terms: Hair/growth & development
  3. Gunawardena TNA, Masoudian Z, Rahman MT, Ramasamy TS, Ramanathan A, Abu Kasim NH
    PLoS One, 2019;14(5):e0216003.
    PMID: 31042749 DOI: 10.1371/journal.pone.0216003
    Alopecia is a clinical condition caused by excessive hair loss which may result in baldness, the causes of which still remain elusive. Conditioned media (CM) from stem cells shows promise in regenerative medicine. Our aim was to evaluate the potential CM of dental pulp stem cells obtained from human deciduous teeth (SHED-CM) to stimulate hair growth under in vitro and in vivo conditions. SHED and hair follicle stem cells (HFSCs) (n = 3) were cultured in media combinations; i) STK2, ii) DMEM-KO+10% FBS, iii) STK2+2% FBS and profiled for the presence of positive hair growth-regulatory paracrine factors; SDF-1, HGF, VEGF-A, PDGF-BB and negative hair growth-regulatory paracrine factors; IL-1α, IL-1β, TGF-β, bFGF, TNF-α, and BDNF. The potential of CM from both cell sources to stimulate hair growth was evaluated based on the paracrine profile and measured dynamics of hair growth under in vitro conditions. The administration of CM media to telogen-staged synchronized 7-week old C3H/HeN female mice was carried out to study the potential of the CM to stimulate hair growth in vivo. SHED and HFSCs cultured in STK2 based media showed a shorter population doubling time, higher viability and better maintenance of MSC characteristics in comparison to cells cultured in DMEM-KO media. STK2 based CM contained only two negative hair growth-regulatory factors; TNF-α, IL-1 while DMEM-KO CM contained all negative hair growth-regulatory factors. The in vitro study confirmed that treatment with STK2 based media CM from passage 3 SHED and HFSCs resulted in a significantly higher number of anagen-staged hair follicles (p<0.05) and a significantly lower number of telogen-staged hair follicles (p<0.05). Administration of SHED-CM to C3H/HeN mice resulted in a significantly faster stimulation of hair growth in comparison to HFSC-CM (p<0.05), while the duration taken for complete hair coverage was similar for both CM sources. Thus, SHED-CM carries the potential to stimulate hair growth which can be used as a treatment tool for alopecia.
    Matched MeSH terms: Hair/growth & development
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links