Displaying all 5 publications

Abstract:
Sort:
  1. Hannan MA, Arebey M, Begum RA, Basri H
    Waste Manag, 2012 Dec;32(12):2229-38.
    PMID: 22749722 DOI: 10.1016/j.wasman.2012.06.002
    An advanced image processing approach integrated with communication technologies and a camera for waste bin level detection has been presented. The proposed system is developed to address environmental concerns associated with waste bins and the variety of waste being disposed in them. A gray level aura matrix (GLAM) approach is proposed to extract the bin image texture. GLAM parameters, such as neighboring systems, are investigated to determine their optimal values. To evaluate the performance of the system, the extracted image is trained and tested using multi-layer perceptions (MLPs) and K-nearest neighbor (KNN) classifiers. The results have shown that the accuracy of bin level classification reach acceptable performance levels for class and grade classification with rates of 98.98% and 90.19% using the MLP classifier and 96.91% and 89.14% using the KNN classifier, respectively. The results demonstrated that the system performance is robust and can be applied to a variety of waste and waste bin level detection under various conditions.
    Matched MeSH terms: Image Processing, Computer-Assisted/instrumentation*
  2. Reza AW, Eswaran C, Dimyati K
    J Med Syst, 2011 Dec;35(6):1491-501.
    PMID: 20703768 DOI: 10.1007/s10916-009-9426-y
    Due to increasing number of diabetic retinopathy cases, ophthalmologists are experiencing serious problem to automatically extract the features from the retinal images. Optic disc (OD), exudates, and cotton wool spots are the main features of fundus images which are used for diagnosing eye diseases, such as diabetic retinopathy and glaucoma. In this paper, a new algorithm for the extraction of these bright objects from fundus images based on marker-controlled watershed segmentation is presented. The proposed algorithm makes use of average filtering and contrast adjustment as preprocessing steps. The concept of the markers is used to modify the gradient before the watershed transformation is applied. The performance of the proposed algorithm is evaluated using the test images of STARE and DRIVE databases. It is shown that the proposed method can yield an average sensitivity value of about 95%, which is comparable to those obtained by the known methods.
    Matched MeSH terms: Image Processing, Computer-Assisted/instrumentation*
  3. Idroas M, Rahim RA, Green RG, Ibrahim MN, Rahiman MH
    Sensors (Basel), 2010;10(10):9512-28.
    PMID: 22163423 DOI: 10.3390/s101009512
    This research investigates the use of charge coupled device (abbreviated as CCD) linear image sensors in an optical tomographic instrumentation system used for sizing particles. The measurement system, consisting of four CCD linear image sensors are configured around an octagonal shaped flow pipe for a four projections system is explained. The four linear image sensors provide 2,048 pixel imaging with a pixel size of 14 micron × 14 micron, hence constituting a high-resolution system. Image reconstruction for a four-projection optical tomography system is also discussed, where a simple optical model is used to relate attenuation due to variations in optical density, [R], within the measurement section. Expressed in matrix form this represents the forward problem in tomography [S] [R] = [M]. In practice, measurements [M] are used to estimate the optical density distribution by solving the inverse problem [R] = [S](-1)[M]. Direct inversion of the sensitivity matrix, [S], is not possible and two approximations are considered and compared-the transpose and the pseudo inverse sensitivity matrices.
    Matched MeSH terms: Image Processing, Computer-Assisted/instrumentation*
  4. Abdullah KA, McEntee MF, Reed W, Kench PL
    J Med Radiat Sci, 2020 Sep;67(3):170-176.
    PMID: 32219989 DOI: 10.1002/jmrs.387
    INTRODUCTION: 3D-printed imaging phantoms are now increasingly available and used for computed tomography (CT) dose optimisation study and image quality analysis. The aim of this study was to evaluate the integrated 3D-printed cardiac insert phantom when evaluating iterative reconstruction (IR) algorithm in coronary CT angiography (CCTA) protocols.

    METHODS: The 3D-printed cardiac insert phantom was positioned into a chest phantom and scanned with a 16-slice CT scanner. Acquisitions were performed with CCTA protocols using 120 kVp at four different tube currents, 300, 200, 100 and 50 mA (protocols A, B, C and D, respectively). The image data sets were reconstructed with a filtered back projection (FBP) and three different IR algorithm strengths. The image quality metrics of image noise, signal-noise ratio (SNR) and contrast-noise ratio (CNR) were calculated for each protocol.

    RESULTS: Decrease in dose levels has significantly increased the image noise, compared to FBP of protocol A (P 

    Matched MeSH terms: Image Processing, Computer-Assisted/instrumentation*
  5. Said MA, Musarudin M, Zulkaffli NF
    Ann Nucl Med, 2020 Dec;34(12):884-891.
    PMID: 33141408 DOI: 10.1007/s12149-020-01543-x
    OBJECTIVE: 18F is the most extensively used radioisotope in current clinical practices of PET imaging. This selection is based on the several criteria of pure PET radioisotopes with an optimum half-life, and low positron energy that contributes to a smaller positron range. In addition to 18F, other radioisotopes such as 68Ga and 124I are currently gained much attention with the increase in interest in new PET tracers entering the clinical trials. This study aims to determine the minimal scan time per bed position (Tmin) for the 124I and 68Ga based on the quantitative differences in PET imaging of 68Ga and 124I relative to 18F.

    METHODS: The European Association of Nuclear Medicine (EANM) procedure guidelines version 2.0 for FDG-PET tumor imaging has adhered for this purpose. A NEMA2012/IEC2008 phantom was filled with tumor to background ratio of 10:1 with the activity concentration of 30 kBq/ml ± 10 and 3 kBq/ml ± 10% for each radioisotope. The phantom was scanned using different acquisition times per bed position (1, 5, 7, 10 and 15 min) to determine the Tmin. The definition of Tmin was performed using an image coefficient of variations (COV) of 15%.

    RESULTS: Tmin obtained for 18F, 68Ga and 124I were 3.08, 3.24 and 32.93 min, respectively. Quantitative analyses among 18F, 68Ga and 124I images were performed. Signal-to-noise ratio (SNR), contrast recovery coefficients (CRC), and visibility (VH) are the image quality parameters analysed in this study. Generally, 68Ga and 18F gave better image quality as compared to 124I for all the parameters studied.

    CONCLUSION: We have defined Tmin for 18F, 68Ga and 124I SPECT CT imaging based on NEMA2012/IEC2008 phantom imaging. Despite the long scanning time suggested by Tmin, improvement in the image quality is acquired especially for 124I. In clinical practice, the long acquisition time, nevertheless, may cause patient discomfort and motion artifact.

    Matched MeSH terms: Image Processing, Computer-Assisted/instrumentation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links