Displaying all 3 publications

Abstract:
Sort:
  1. Williams AR, Krych L, Fauzan Ahmad H, Nejsum P, Skovgaard K, Nielsen DS, et al.
    PLoS One, 2017;12(10):e0186546.
    PMID: 29028844 DOI: 10.1371/journal.pone.0186546
    Polyphenols are a class of bioactive plant secondary metabolites that are thought to have beneficial effects on gut health, such as modulation of mucosal immune and inflammatory responses and regulation of parasite burdens. Here, we examined the interactions between a polyphenol-rich diet supplement and infection with the enteric nematode Ascaris suum in pigs. Pigs were fed either a basal diet or the same diet supplemented with grape pomace (GP), an industrial by-product rich in polyphenols such as oligomeric proanthocyanidins. Half of the animals in each group were then inoculated with A. suum for 14 days to assess parasite establishment, acquisition of local and systemic immune responses and effects on the gut microbiome. Despite in vitro anthelmintic activity of GP-extracts, numbers of parasite larvae in the intestine were not altered by GP-supplementation. However, the bioactive diet significantly increased numbers of eosinophils induced by A. suum infection in the duodenum, jejunum and ileum, and modulated gene expression in the jejunal mucosa of infected pigs. Both GP-supplementation and A. suum infection induced significant and apparently similar changes in the composition of the prokaryotic gut microbiota, and both also decreased concentrations of isobutyric and isovaleric acid (branched-chain short chain fatty acids) in the colon. Our results demonstrate that while a polyphenol-enriched diet in pigs may not directly influence A. suum establishment, it significantly modulates the subsequent host response to helminth infection. Our results suggest an influence of diet on immune function which may potentially be exploited to enhance immunity to helminths.
    Matched MeSH terms: Immunity, Mucosal/drug effects*
  2. Israf DA, Lajis NH, Somchit MN, Sulaiman MR
    Life Sci, 2004 Jun 11;75(4):397-406.
    PMID: 15147827
    An experiment was conducted with the objective to enhance mucosal immunity against ovalbumin (OVA) by co-administration of OVA with an aqueous extract from the fruit of Solanum torvum (STE). Five groups of female ICR mice aged approximately 8 weeks at the commencement of the experiment were caged in groups of eight and received various treatments. The treatments included OVA alone, OVA with cholera toxin (CT), and OVA with various doses of STE. Mice were primed intraperitoneally with 500 microg of OVA alone or co-administered with 0.1 microg CT, or with 1 microg STE. All mice were boosted orally via gastric intubation 14 days after priming with 10 mg OVA alone, or co-administered with 10 microg CT or with 10 mg, 1 mg or 0.1 mg STE. One week later all mice were killed and organs obtained for analysis of the immune response. Intestinal, faecal and pulmonary OVA-specific sIgA concentration was significantly increased (p<0.05) in mice that received booster combinations of OVA/CT and OVA with all extract doses (p<0.05). Specific serum IgG titres did not differ significantly between groups. It is concluded that STE can significantly enhance secretory immunity in the intestine to OVA with mucosal homing to the lungs. The adjuvant effect of STE is comparable to that of CT.
    Matched MeSH terms: Immunity, Mucosal/drug effects
  3. Ji L, Li L, Kuang J, Yang T, Kim DJ, Kadir AA, et al.
    Diabetes Obes Metab, 2017 05;19(5):754-758.
    PMID: 28075066 DOI: 10.1111/dom.12875
    This study evaluated the efficacy and safety of 26 weeks of twice-daily (BID) alogliptin + metformin fixed-dose combination (FDC) therapy in Asian patients with type 2 diabetes. Patients aged 18 to 75 years with hemoglobin A1c (HbA1c) of 7.5% to 10.0% after ≥2 months of diet and exercise and a 4-week placebo run-in were enrolled. Eligible patients were randomized (1:1:1:1) to placebo, alogliptin 12.5 mg BID, metformin 500 mg BID or alogliptin 12.5 mg plus metformin 500 mg FDC BID. The primary endpoint was change in HbA1c from baseline to end of treatment (Week 26). In total, 647 patients were randomized. The least-squares mean change in HbA1c from baseline to Week 26 was -0.19% with placebo, -0.86% with alogliptin, -1.04% with metformin and -1.53% with alogliptin + metformin FDC. Alogliptin + metformin FDC was significantly more effective ( P  
    Matched MeSH terms: Immunity, Mucosal/drug effects
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links