Displaying all 2 publications

Abstract:
Sort:
  1. Srinivasan V, Spence DW, Trakht I, Pandi-Perumal SR, Cardinali DP, Maestroni GJ
    Neuroimmunomodulation, 2008;15(2):93-101.
    PMID: 18679047 DOI: 10.1159/000148191
    Melatonin is not only synthesized by the pineal gland but also in many other organs and tissues of the body, particularly by lymphoid organs such as the bone marrow, thymus and lymphocytes. Melatonin participates in various functions of the body, among which its immunomodulatory role has assumed considerable significance in recent years. Melatonin has been shown to be involved in the regulation of both cellular and humoral immunity. Melatonin not only stimulates the production of natural killer cells, monocytes and leukocytes, but also alters the balance of T helper (Th)-1 and Th-2 cells mainly towards Th-1 responses and increases the production of relevant cytokines such as interleukin (IL)-2, IL-6, IL-12 and interferon-gamma. The regulatory function of melatonin on immune mechanisms is seasonally dependent. This fact may in part account for the cyclic pattern of symptom expression shown by certain infectious diseases, which become more pronounced at particular times of the year. Moreover, melatonin-induced seasonal changes in immune function have also been implicated in the pathogenesis of seasonal affective disorder and rheumatoid arthritis. The clinical significance of the seasonally changing immunomodulatory role of melatonin is discussed in this review.
    Matched MeSH terms: Immunologic Factors/secretion
  2. Yong KW, Choi JR, Wan Safwani WK
    Adv Exp Med Biol, 2016;951:99-110.
    PMID: 27837557
    Human mesenchymal stem cells (hMSCs), a type of adult stem cells that hold great potential in clinical applications (e.g., regenerative medicine and cell-based therapy) due to their ability to differentiate into multiple types of specialized cells and secrete soluble factors which can initiate tissue repair and regulate immune response. hMSCs need to be expanded in vitro or cryopreserved to obtain sufficient cell numbers required for clinical applications. However, long-term in vitro culture-expanded hMSCs may raise some biosafety concerns (e.g., chromosomal abnormality and malignant transformation) and compromised functional properties, limiting their use in clinical applications. To avoid those adverse effects, it is essential to cryopreserve hMSCs at early passage and pool them for off-the-shelf use in clinical applications. However, the existing cryopreservation methods for hMSCs have some notable limitations. To address these limitations, several approaches have to be taken in order to produce healthy and efficacious cryopreserved hMSCs for clinical trials, which remains challenging to date. Therefore, a noteworthy amount of resources has been utilized in research in optimization of the cryopreservation methods, development of freezing devices, and formulation of cryopreservation media to ensure that hMSCs maintain their therapeutic characteristics without raising biosafety concerns following cryopreservation. Biobanking of hMSCs would be a crucial strategy to facilitate clinical applications in the future.
    Matched MeSH terms: Immunologic Factors/secretion
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links