To explore the potential of in vitro rapid regeneration, three varieties (Golpaygan-181, Orumieh-1763, and Gorgan-1601) of sainfoin (Onobrychis viciifolia Scop. syn. Onobrychis sativa L.) were evaluated. For the first time, an encapsulation protocol was established from somatic embryogenic callus in torpedo and cotyledonary stages to create artificial seeds. Callus derived from different concentrations of Kinetin (0-2.0 mg L(-1)) and Indole-3-acetic acid (0-2.0 mg L(-1)) was coated with sodium alginate and subsequently cultured either in Murashige and Skoog (MS) medium or in soil substrate. Adventitious shoots from synthetic beads developed into rooting in full and half strength MS medium supplemented with various concentrations of auxin and cytokinin. Prolonged water conservation of black and red soils (1:1) had the highest rate of survival plantlets in the acclimatization process. Diverse resistance techniques in Onobrychis viciifolia were evaluated when the plants were subjected to water deficiency. Higher frequency of epicuticular waxes was observed in in vivo leaves compared to in vitro leaves. Jagged trichomes nonsecreting glands covered by spines were only observed in the lower leaf side. Ultimately, stomata indices were 0.127 (abaxial), 0.188 (adaxial) in in vivo and 0.121 (abaxial), 0.201 (adaxial) in in vitro leaves.
The present study aimed to optimize the conditions for the production of adventitious roots from Eurycoma longifolia Jack, an important medicinal woody plant, in bioreactor culture. The effects of the type and concentration of auxin on root growth were studied, as well as the effects of the NH4(+):NO3(-) ratio on adventitious root growth and the production of phenolics and flavonoids. Approximately 5 g L(-1) fresh weight of adventitious roots was inoculated into a 3 L balloon-type bubble bioreactor, which contained 2 L 3/4 MS medium supplemented with 30 g L(-1) sucrose and cultures were maintained in the dark for 7 weeks at 24 ± 1°C. Higher concentrations of IBA (7.0 and 9.0 mg L(-1)) and NAA (5.0 mg L(-1)) enhanced the biomass and accumulation of total phenolics and flavonoids. The adventitious roots were thin, numerous, and elongated in 3/4 MS medium supplemented with 5.0 and 7.0 mg L(-1) IBA, whereas the lateral roots were shorter and thicker with 5.0 mg L(-1) NAA compared with IBA treatment. The optimum biomasses of 50.22 g L(-1) fresh weight and 4.60 g L(-1) dry weight were obtained with an NH4(+):NO3(-) ratio of 15:30. High phenolic and flavonoid productions (38.59 and 11.27 mg L(-1) medium, respectively) were also obtained with a ratio of 15:30. Analysis of the 2,2-diphenyl-1-picrylhydrazyl (DPPH)-scavenging activity indicated higher antioxidant activity with an NH4(+):NO3(-) ratio of 30:15. These results suggest that balloon-type bubble bioreactor cultures are suitable for the large-scale commercial production of E. longifolia adventitious roots which contain high yield of bioactive compounds.
Microalgae lipids and oils are potential candidates for renewable biodiesel. Many microalgae species accumulate a substantial amount of lipids and oils under environmental stresses. However, low growth rate under these adverse conditions account for the decrease in overall biomass productivity which directly influence the oil yield. This study was undertaken to investigate the effect of exogenously added auxin (indole-3-acetic acid; IAA) on the oil content, fatty acid compositions, and the expression of fatty acid biosynthetic genes in Chlorella vulgaris (UMT-M1). Auxin has been shown to regulate growth and metabolite production of several microalgae. Results showed that oil accumulation was highest on days after treatment (DAT)-2 with enriched levels of palmitic (C16:0) and stearic (C18:0) acids, while the linoleic (C18:2) and α-linolenic (C18:3n3) acids levels were markedly reduced by IAA. The elevated levels of saturated fatty acids (C16:0 and C18:0) were consistent with high expression of the β-ketoacyl ACP synthase I (KAS I) gene, while low expression of omega-6 fatty acid desaturase (ω-6 FAD) gene was consistent with low production of C18:2. However, the increment of stearoyl-ACP desaturase (SAD) gene expression upon IAA induction did not coincide with oleic acid (C18:1) production. The expression of omega-3 fatty acid desaturase (ω-3 FAD) gene showed a positive correlation with the synthesis of PUFA and C18:3n3.
The ubiquitin extension protein (uep1) gene was identified as a constitutively expressed gene in oil palm. We have isolated and characterized the 5' region of the oil palm uep1 gene, which contains an 828 bp sequence upstream of the uep1 translational start site. Construction of a pUEP1 transformation vector, which contains gusA reporter gene under the control of uep1 promoter, was carried out for functional analysis of the promoter through transient expression studies. It was found that the 5' region of uep1 functions as a constitutive promoter in oil palm and could drive GUS expression in all tissues tested, including embryogenic calli, embryoid, immature embryo, young leaflet from mature palm, green leaf, mesocarp and meristematic tissues (shoot tip). This promoter could also be used in dicot systems as it was demonstrated to be capable of driving gusA gene expression in tobacco.
Oil palm suspension cultures were initiated by transferring the gel-like friable embryogenic tissue onto liquid medium supplemented with auxins. In this study, transcripts that were differentially expressed in oil palm suspension cells cultured at different auxin concentrations were examined using suppression subtractive hybridization. Total RNA was first isolated from oil palm suspension cells proliferated in liquid medium with different hormone concentrations for 6 months. Four different hormone combinations: T1 (0.1 mg/l 2,4-D and 1.0 mg/l NAA), T2 (0.4 mg/l 2,4-D and 1.0 mg/l NAA), T3 (1.0 mg/l NAA), and T4 (0.4 mg/l 2,4-D) were used for the treatments. The first and second subtractions were performed using samples T1 and T2 in forward and reverse order. The other two subtractions were forward and reverse subtractions of T3 and T4, respectively. Reverse northern analyses showed that 14.13% of these clones were preferentially expressed in T1, 13.70% in T2, 14.75% in T3, and 15.70% in T4. Among the 294 cDNA clones that were sequenced, 61 contigs (assembled from 165 sequences) and 129 singletons were obtained. Among the 61 contigs, 10 contigs consist of sequences from treatment T1, 8 contigs were from treatment T2, 10 contigs were contains sequences of treatment T3 and 13 contigs contains sequences of treatment T4. Northern analyses of five transcripts that were shown to be differentially expressed in the oil palm suspension cells by reverse northern analysis revealed that transcripts 16A1 (a putative lignostilbene-alpha,beta-dioxygenase, EgLSD) and 16H12 (a putative ethylene responsive 6, EgER6) were differentially expressed in oil palm suspension cells treated with different levels of auxin.