In the past decade, there has been a global resurgence of bed bug infestations, especially in developed countries. Proper awareness and identification of bed bug infestations are essential to guide treatment and eradication. The purpose of this article is to familiarize physicians with bed bug bites so that they can effectively diagnose, treat, and address questions about bed bug bites and infestations. Bed bug bites are often painless. Typical reactions include pruritic, erythematous maculopapules occurring in clusters or in a linear or curvilinear distribution in exposed areas of the body. A small red punctum may be visualized at the center of the bite mark. Lesions that appear three in a row and papules on the upper eyelid associated with erythema and edema are highly suggestive of bites from bed bugs. Exaggerated local reactions such as vesicles, urticarial wheals, urticarial perilesional plaques, diffuse urticaria, bullae, and nodules may occur in previously sensitized individuals. Reactions to bed bug bites are self-limited. As such, treatment is mainly symptomatic. Topical pramoxine and oral antihistamines can be used to alleviate pruritus. Topical corticosteroids can be used for significant eruptions to control inflammation and pruritus, and to hasten resolution of the lesions. Integrated pest management, an approach for the eradication of bed bugs, includes monitoring devices (active monitors include the use of heat or carbon dioxide attractants and passive monitors include the use of sticky pads for trapping), and judicious use of nonchemical and chemical treatments known to be effective. Nonchemical interventions include keeping affected areas clean and free of clutter, vacuuming, washing linens with hot water, caulking wall holes and cracks where bugs can hide, proper disposal of highly infested items, and placement of bed bug traps/interceptors at the base of beds and furniture. Chemical interventions involve the use of insecticides such as synthetic pyrethroids, silicates, insect growth disruptors, carbamates, organophosphates, neonicotinoids, diethyl-meta-toluamide, chlorfenapyr, fipronil and plant essential oils. Insecticides should be used with caution to prevent over-exposure and toxicity (in particular, cardiovascular and neurologic toxicity), especially if there are young children around. It is important to note that multiple mechanisms of insecticide resistance exist and as such, chemical treatment should only be undertaken by trained professionals who understand the current literature on resistance. Both nonchemical and chemical technologies should be combined for optimal results. Bed bug infestations may cause diverse dermal reactions, stigmatization, poor self-esteem, emotional stress, anxiety, significant adverse effect on quality of life, and substantial socioeconomic burden to society. As such, their rapid detection and eradication are of paramount importance. Consultation with a professional exterminator is recommended to fully eradicate an infestation.
BACKGROUND: Pediculiasis is treated aggressively in the United States, mainly with permethrin- and pyrethrin-containing pediculicides. Increasingly frequent anecdotal reports of treatment failure suggest the emergence of insecticidal resistance by these lice.
OBJECTIVE: To confirm or refute the susceptibility of head lice sampled in the United States to permethrin.
DESIGN: Survey. Head lice were removed from children residing where pediculicides are readily available and where such products are essentially unknown. Their survival was compared following exposure to residues of graded doses of permethrin in an in vitro bioassay.
SETTING: School children from Massachusetts, Idaho, and Sabah (Malaysian Borneo).
SUBJECTS: In the United States, 75 children aged 5 to 8 years. In Sabah, 59 boys aged 6 to 13 years. Virtually all sampled US children had previously been treated with pediculicides containing pyrethrins or permethrin; none of the Sabahan children were so exposed.
MAIN OUTCOME MEASURE: Survival of head lice exposed to permethrin.
RESULTS: Permethrin did not affect head lice sampled from chronically infested US children who had previously been treated for pediculiasis. The slope of the dose-response regression line for these lice did not differ significantly from zero (P = .66). This pediculicide immobilized lice sampled in Sabah. Mortality correlated closely with permethrin concentration (P = .008).
CONCLUSIONS: Head lice in the United States are less susceptible to permethrin than are those in Sabah. The pyrethroid susceptibility of the general population of head lice in the United States, however, remains poorly defined. Accordingly, these relatively safe over-the-counter preparations may remain the pediculicides of choice for newly recognized louse infestations.
BACKGROUND: Infestation of wounds with the larvae of Callophorid flies is relatively common in countries where these parasites are found. The most common species associated with infections in Southeast Asia is Chrysomya bezziana (Ch. bezziana), the Old World screw worm. Treatment consists of either subcutaneous injection of ivermectin or oral administration of nitenpyram combined with aggressive tissue debridement under general anaesthesia.
OBJECTIVES: To describe the treatment of cutaneous myiasis in three dogs caused by the larvae of Ch. bezziana in Malaysia and their treatment with spinosad plus milbemycin.
RESULTS: In all dogs, a single oral dose of spinosad plus milbemycin at the recommended dosage of 31-62 mg/kg and 0.5-1.0 mg/kg, respectively, was able to kill all larvae within 8 h. Most dead larvae fell off the host and those remaining on the host were dead and easily removed with simple saline flushing and gentle debridement. Neither general anaesthesia nor aggressive mechanical debridement were needed in any patient.
CONCLUSIONS AND CLINICAL IMPORTANCE: Oral spinosad plus milbemycin is a safe, licensed and effective treatment at the recommended dose for the rapid elimination of Ch. bezziana myiasis, with no need for sedation or anaesthesia.
Some insecticides to control and prevent screw-worm fly strike by Chrysomya bezziana in calves and adult cattle were tested in field trials on cattle in Sabah, East Malaysia. Ivermectin injected subcutaneously in newborn calves at 200 mu/kg provided 10 days protection from screw-worm fly strike, which allowed navels to dry. Ivermectin, 1% dichlofenthion plus gentian violet and 3% lindane plus pine oil smear were all effective in preventing re-strike of treated wounds in adult cattle. A single subcutaneous injection of ivermectin at 200 mu/kg was effective, whereas it was necessary to re-apply the dichlofenthion and lindane smear preparations every 48h.