Displaying all 6 publications

Abstract:
Sort:
  1. Wong MM, Lim CL, Wilson JJ
    Bull. Entomol. Res., 2015 Aug;105(4):515-20.
    PMID: 25913190 DOI: 10.1017/S0007485315000358
    Chinese knotweed (Persicaria chinensis) is of ecological and economic importance as a high-risk invasive species and a traditional medicinal herb. However, the insects associated with P. chinensis pollination have received scant attention. As a widespread invasive plant we would expect P. chinensis to be associated with a diverse group of insect pollinators, but lack of taxonomic identification capacity is an impediment to confirm this expectation. In the present study we aimed to elucidate the insect pollinators of P. chinensis in peninsular Malaysia using DNA barcoding. Forty flower visitors, representing the range of morphological diversity observed, were captured at flowers at Ulu Kali, Pahang, Malaysia. Using Automated Barcode Gap Discovery, 17 morphospecies were assigned to 23 species representing at least ten families and four orders. Using the DNA barcode library (BOLD) 30% of the species could be assigned a species name, and 70% could be assigned a genus name. The insects visiting P. chinensis were broadly similar to those previously reported as visiting Persicaria japonica, including honey bees (Apis), droneflies (Eristalis), blowflies (Lucilia) and potter wasps (Eumedes), but also included thrips and ants.
    Matched MeSH terms: Insects/genetics*
  2. Kamimura Y, Yang CS, Lee CY
    J Evol Biol, 2019 08;32(8):844-855.
    PMID: 31081978 DOI: 10.1111/jeb.13486
    The evolution of laterality, that is the biased use of laterally paired, morphologically symmetrical organs, has attracted the interest of researchers from a variety of disciplines. It is, however, difficult to quantify the fitness benefits of laterality because many organs, such as human hands, possess multimodal functions. Males of the earwig Labidura riparia (Insecta: Dermaptera: Labiduridae) have morphologically similar laterally paired penises, only one of which is used for inseminating the female during a single copulation bout, and thus provide a rare opportunity to address how selection pressure may shape the evolution of population-level laterality. Our population studies revealed that in 10 populations, located at 2.23-43.3° north, the right penis is predominantly used for copulating (88.6%). A damaged penis was found in 23% of rare left-handers, suggesting that the left penis can function as a spare when the right one is damaged. By pairing L. riparia females with surgically manipulated males, we found that males forced to use the right penis outperformed left-handed males in copulation (the probability of establishing genital coupling during the 1-hr observation period: odds ratio [OR] of 3.50) and insemination (probability of transferring a detectable amount of sperm: OR of 2.94). This right-handed advantage may be due to the coiled morphology of the sperm storage organ with a right-facing opening. Thus, female genital morphology may play a significant role in the evolution of handedness and may have acted as a driving force to reduce penis number in related taxa.
    Matched MeSH terms: Insects/genetics*
  3. Yoshizawa K, Lienhard C
    Zootaxa, 2015;3957(4):480-8.
    PMID: 26249090 DOI: 10.11646/zootaxa.3957.4.8
    The genus Cryptopsocus Li, 2002 is synonymized with Trichadenotecnum Enderlein, 1909. The type species of Crypto-psocus, T. cynostigmus (Li, 2002) n. comb., is considered to be a close relative of T. marginatum New & Thornton, 1976. These species cannot be assigned to any species group previously established in Trichadenotecnum so that the marginatum species group is here proposed for them. Three new species belonging to this species group are described: T. tigrinum and T. sharkeyi from Thailand and T. sabahense from Sabah, Malaysia. The phylogenetic position of the marginatum group is discussed using morphological data.
    Matched MeSH terms: Insects/genetics
  4. Hennemann FH, Conle OV, Brock PD, Seow-Choen F
    Zootaxa, 2016 Sep 01;4159(1):1-219.
    PMID: 27615907 DOI: 10.11646/zootaxa.4159.1.1
    The areolate Oriental family Heteropterygidae Kirby, 1893 is critically reviewed and the results of the present study contradict the arrangement suggested by Zompro (2004), but in most aspects agree with a molecular study presented by Whiting et al (2003) and a phylogenetic study presented by Bradler (2009). The family is critically discussed and new hypotheses are presented for the phylogeny and intra-familiar relationships, placing the subfamily Dataminae Rehn & Rehn, 1939 as the basalmost clade of Heteropterygidae. The subfamilies Obriminae Brunner v. Wattenwyl, 1893 and Heteropteryginae Kirby, 1893 together represent the sister-group of Dataminae. Arguments and a tree are presented to support this hypothesis. New diagnoses and lists of genera are provided for all three subfamilies contained in Heteropterygidae, along with keys to distinguish between them.        The subfamily Obriminae is critically reviewed and the distinction between the three tribes Obrimini Brunner v. Wattenwyl, 1893, Eubulidini Zompro, 2004 and Miroceramiini Zompro, 2004 introduced by Zompro (2004) is shown to be poorly supported. While Obrimini sensu Zompro, 2004 is generally accepted (but now also contains genera that were placed in Eubulidini or Miroceramiini by Zompro (2004)), the tribes Eubulidini and Miroceramiini are not supported. A new arrangement is introduced, which is based on morphological characters neglected or overlooked by Zompro (2004) but were partly discussed by Bradler (2009). The genus Mearnsiana Rehn & Rehn, 1939 is removed from Miroceramiini and transferred to Obrimini. The genera Eubulides Stål, 1877, Heterocopus Redtenbacher, 1906, Theramenes Stål, 1875 and Stenobrimus Redtenbacher, 1906 are removed from Eubulidini and also transferred to Obrimini. Consequently, Eubulidini is synonymised with Obrimini (n. syn.). Miroceramiini is a monotypical tribe and only includes the Wallacean genus Miroceramia Günther, 1934. The new tribe Tisamenini n. trib. is established for the three basal genera Tisamenus Stål, 1875, Ilocano Rehn & Rehn, 1939 and Hoploclonia Stål, 1875 all of which were placed in Eubulidini by Zompro (2004). The latter genus differs from the other two genera by the morphology of the female genitalia, which is unique amongst the entire family. Three generic groups are recognized within Obrimini, the Obrimus-group, Stenobrimus-group and Theramenes-group. Keys are presented to distinguish between the three tribes now contained in the Obriminae, i.e. Obrimini, Tisamenini n. trib. and Miroceramiini. The genus Hennobrimus Conle, 2006 is synonymised with Mearnsiana Rehn & Rehn, 1939, based on the fact that the type-species of both genera are conspecific (n. syn.). Hennobrimus hennemanni Conle, 2006, the type-species of Hennobrimus, and Trachyaretaon manobo Lit & Eusebio, 2005 are synonymised with Mearnsiana bullosa Rehn & Rehn, 1939, the type-species of Mearnsiana (n. syn.). Theramenes dromedarius Stål, 1877 from the Philippines is removed from synonymy with the Wallacean Theramenes olivaceus (Westwood, 1859) and re-established as a valid species (rev. stat.).        The subfamily Heteropteryginae Kirby, 1896 is revised at the species-level and a new diagnosis is presented. Keys to the two genera and all 16 known species are provided along with new descriptions, differential diagnoses, lists of examined material, detailed information on the known distributions, measurements and illustrations of the insects and eggs. The intra-subfamiliar and intra-generic relationships are discussed and a cladogram is presented. Heteropteryginae contains two genera: Heteropteryx Gray, 1835 (Type-species: Phasma dilatatum Parkinson, 1798) and Haaniella Kirby, 1896 (Type-species: Phasma (Heteropteryx) muelleri de Haan, 1842). The distribution of this subfamily is restricted to Sundaland with the exception of a single species that is found in Vietnam. All other species are distributed in Borneo, Sumatra, the Mentawai Islands, Singapore, Peninsular Malaysia and Thailand. Heteropteryginae contains the largest and most striking members of the entire family Heteropteryginae, some of which are amongst the heaviest insects known. The subfamily is characterized by apomorphies such as the presence of wings, having a tympanal area (= stridulatory organ) in the basal portion of the alae, straight profemora, strongly shortened tarsi, lack of rough sensory-areas on the prosternum and typically X-shaped micropylar plate of the eggs. The sister-group of Heteropteryginae is represented by the Obriminae, with which it shares a beak-like secondary ovipositor in the females and presence of a medio-apical spine on the area apicalis. Both features are synapomorphies of Heteropteryginae + Obriminae.        The genus Haaniella Kirby, 1904 contains 16 known species, five of which are newly described herein. The genus Miniopteryx Zompro, 2004 (Type-species: Haaniella parva Günther, 1944) is synonymised with Haaniella on the basis that the distinguishing feature mentioned in the original description is a character that is frequently found throughout the genus (n. syn.). The type-species H. parva Günther, 1944 is automatically retransferred to Haaniella (rev. stat.). Haaniella aculeata n. sp. from western Sumatra is described from the male. Haaniella macroptera n. sp. from Singapore and the Johor state in southern Peninsular Malaysia is described from both sexes and the eggs. Haaniella gintingi n. sp. from Central Sumatra is described from both sexes and the eggs and Haaniella kerincia n. sp. from Western Sumatra is described from the insects only, the eggs being still unknown. One new species, Haaniella gorochovi n. sp., is the only representative of the genus and subfamily Heteropteryginae known from Vietnam and both sexes as well as the eggs are described. Haaniella erringtoniae (Redtenbacher, 1906) is endemic in Peninsular Malaysia, here removed from synonymy with H. muelleri (de Haan, 1842) and re-established as a valid species (rev. stat.). The Sumatran Haaniella glaber (Redtenbacher, 1906) is removed from synonymy with H. muelleri (Haan, 1842) and re-established as a valid species (rev. stat.). Leocrates glaber Redtenbacher, 1906 and Haaniella muelleri simplex Günther, 1944 are removed from synonymy with H. muelleri (Haan, 1842) (rev. stat.) and synonymised with H. glaber. Haaniella mecheli (Redtenbacher, 1906) and H. rosenbergii (Kaup, 1871) are removed from synonymy with H. muelleri (Haan, 1842) and re-established as valid species (rev. stat.). Haaniella erringtoniae novaeguineae Günther, 1934 and Haaniella muelleri var. b. (Haan, 1842) are synonymized with H. rosenbergii (Kaup, 1871) (n. syn.). The type-species Haaniella muelleri (Haan, 1842) is shown to be a fairly rare species that is restricted to Sumatra. All subsequent records of H. muelleri from outside Sumatra and references to captive breeding of stock originating from Peninsular Malaysia in Europe relate to H. erringtoniae (Redtenbacher, 1906). The previously unknown males and eggs of H. rosenbergii (Kaup, 1871) as well as the previously unknown females and eggs of H. parva Günther, 1944 are described and illustrated for the first time. Based on morphological characters of the insects and eggs three distinct species-groups are recognized within Haaniella. The muelleri species-group contains nine species that are distributed throughout Sumatra, the Mentawei Islands, Singapore and Peninsular Malaysia. These are characterized by the smooth ventral surface of the meso- and metafemora and lemon-shaped eggs which entirely lack the setae seen in the two other species-groups. The grayii species-group comprises four species, two of which are endemic in Borneo, one endemic in Sumatra and the fourth species being the only known representative of the subfamily in Vietnam. These species are characteristic for the prominent pair of spines on the abdominal tergites II-IV of males and long apically multidentate epiproct of females. The echinata species-group contains three exceptionally Bornean species, which are characterized by the long and apically pointed subgenital plate of females, which clearly projects beyond the epiproct, as well as the sub-basal lateral tooth of the anal segment of males. The muelleri species-group is sister to the remainder two species-groups.        Heteropteryx Gray, 1853 is a monotypical genus and only contains the type-species H. dilatata (Parkinson, 1798), which is found throughout Peninsular Malaysia, Thailand, Sumatra and Northeastern Borneo. This genus differs from Haaniella by the strongly conically elevated head, which posteriorly projects over the anterior margin of the pronotum, females being bright green or yellow in colour with plain and translucent pink alae and having distinct spines on the abdominal tergites, and males having a strongly shortened mesothorax and dull pink alae.        Lectotypes are designated for Haaniella parva Günther, 1944, Heteropteryx echinata Redtenbacher, 1906, Heteropteryx saussurei Redtenbacher, 1906 and Heteropteryx scabra Redtenbacher, 1906 to guarantee stability of these names.        Information on the habitats, host-plants, biology, life cycle, parasitism and captive breeding of the species of Heteropteryginae is presented and a list summarising all taxonomic changes presented herein.
    Matched MeSH terms: Insects/genetics
  5. Yong HS, Chua KO, Song SL, Liew YJ, Eamsobhana P, Chan KG
    Mol Biol Rep, 2021 Aug;48(8):6047-6056.
    PMID: 34357549 DOI: 10.1007/s11033-021-06608-2
    BACKGROUND: Tephritid fruit flies of the genus Dacus are members of the tribe Dacini, subfamily Dacinae. There are some 274 species worldwide, distributed in Africa and the Asia-Pacific. To date, only five complete mitochondrial genomes (mitogenomes) of Dacus fruit flies have been published and are available in the GenBank.

    METHODS AND RESULTS: In view of the lack of study on their mitogenome, we sequenced (by next generation sequencing) and annotated the complete mitogenome of D. vijaysegarani from Malaysia to determine its features and phylogenetic relationship. The whole mitogenome of D. vijaysegarani has identical gene order with the published mitogenomes of the genus Dacus, with 13 protein-coding genes, two rRNA genes, 22 tRNAs, a non-coding A + T rich control region, and intergenic spacer and overlap sequences. Phylogenetic analysis based on 15 mitochondrial genes (13 PCGs and two rRNA genes), reveals Dacus, Zeugodacus and Bactrocera forming a distinct clade. The genus Dacus forms a monophyletic group in the subclade containing also the Zeugodacus group; this Dacus-Zeugodacus subclade is distinct from the Bactrocera subclade. D. (Mellesis) vijaysegarani forms a lineage with D. (Mellesis) trimacula in the subcluster containing also the lineage of D. (Mellesis) conopsoides and D. (Callantra) longicornis. D. (Dacus) bivittatus and D. (Didacus) ciliatus form a distinct subcluster. Based on cox1 sequences, the Malaysia and Vietnam taxa of D. vijaysegarani may not be conspecific.

    CONCLUSIONS: Overall, the mitochondrial genome of D. vijaysegarani provided essential molecular data that could be useful for further studies for species diagnosis, evolution and phylogeny research of other tephritid fruit flies in the future.

    Matched MeSH terms: Insects/genetics
  6. Latif MA, Omar MY, Tan SG, Siraj SS, Ismail AR
    Biochem Genet, 2010 Apr;48(3-4):266-86.
    PMID: 19967400 DOI: 10.1007/s10528-009-9316-5
    Studies on hybridization, inheritance, and population genetics of brown planthoppers that infest rice and weeds were undertaken using starch gel electrophoresis to determine whether the weed-infesting population represents a biological race or a species. F(1) and F(2) generations were produced by crosses between parental insects from the two populations with little indication of hybrid sterility. Gpi, Mdh, and Idh loci were inherited in a simple Mendelian fashion in families of two sympatric populations. Sixteen populations of Nilaparvata spp. from eight locations were collected. The Mdh, Idh, Pgm, Gpi, 6Pgd, and Acp loci were polymorphic. The N. lugens of rice with high esterase activity were clustered into a group and characterized by the presence of alleles Gpi (110) and Gpi (120), whereas N. lugens from weeds with low esterase activity were clustered into another group and characterized by Gpi (100) and Gpi (90) . There was a lack of heterozygotes between the common alleles of the two populations. This means that the two groups of individuals belong to different gene pools.
    Matched MeSH terms: Insects/genetics*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links