Displaying all 10 publications

Abstract:
Sort:
  1. Rajalingham S, Das S
    Inflamm Allergy Drug Targets, 2012 Aug 1;11(4):262-5.
    PMID: 22452603
    Ankylosing spondylitis (AS) is a chronic inflammatory disorder with predilection for the axial skeleton, leading to progressive restricted mobility and deformity of the spine. The fundamental mechanism involves autoimmunity orchestrated by T cells. Similar to other rheumatic diseases, the complex interplay of cytokines such as tumour necrosis factor alpha, interleukin-6 (IL 6) and interleukin-10 (IL 10) has been implicated in the pathogenesis of the disease. Despite extensive research over the past decades, the treatment options for AS, are limited. Non steroidal antiinflammatory drugs are the first line of therapy, whereas anti TNF drugs are administered for refractory cases which fail to respond to the treatment. There have been conflicting views on the correlation of IL 6 with disease activity in AS. As such, the debate on the role of anti IL6 in AS is still ongoing. Anti IL 6 such as tocilizumab and siltuximab have proven efficacy based on the large randomized controlled trials. The Food and Drug Administration (FDA) has approved these drugs for treating rheumatoid arthritis and systemic juvenile idiopathic arthritis. Researchers have adventurously experimented anti IL 6 therapy in AS but the conclusions made were not consolidated into international guidelines or consensus statement for clinical practice. In the present review, we explore the role of anti IL6 in the treatment of AS based on the cumulative evidence over recent years.
    Matched MeSH terms: Interleukin-6/antagonists & inhibitors*
  2. Kow CS, Zaihan AF, Ramachandram DS, Hasan SS
    Cytokine, 2022 Jan;149:155730.
    PMID: 34628129 DOI: 10.1016/j.cyto.2021.155730
    Matched MeSH terms: Interleukin-6/antagonists & inhibitors*
  3. Kampan NC, Xiang SD, McNally OM, Stephens AN, Quinn MA, Plebanski M
    Curr Med Chem, 2018;25(36):4785-4806.
    PMID: 28707587 DOI: 10.2174/0929867324666170712160621
    Interleukin 6 (IL-6), a well-known pro-inflammatory cytokine with pleiotropic activity is a central player in chronic inflammatory diseases including cancers. Therefore, blockade of the IL-6 signalling pathway has become a target for the therapy of diverse cancers such as multicentric Castleman's disease (CD), multiple myeloma and solid tumours including renal, prostate, lung, colorectal and ovarian cancers. Monoclonal antibodies against IL-6 (Siltuximab) and the IL-6 receptor (IL-6R) (Tocilizumab) have emerged as potential immunotherapies, alone or in combination with conventional chemotherapy. Human trials have demonstrated the ability to block IL-6 activity and in multicentric CD lead to durable clinical response and longer disease stabilisation. However, the efficacy of these treatments is still debatable for other cancers. New generation therapeutics in development such as Clazakizumab, Sarilumab, and soluble gp130-Fc have the additional features of improved binding affinity, better specificity with reduced adverse effects. A deeper understanding of the immunological basis of these agents, as well as of the challenges that are faced by immunotherapy-based products in clinical trials, will help select the most promising anti-IL-6/IL-6R therapies for large scale use. Concurrently, current research efforts to personalize treatments may help in the treatment of patients that would greatly benefit from IL-6 blocking therapies.
    Matched MeSH terms: Interleukin-6/antagonists & inhibitors*; Receptors, Interleukin-6/antagonists & inhibitors*
  4. Bharti R, Dey G, Ojha PK, Rajput S, Jaganathan SK, Sen R, et al.
    Oncogene, 2016 Jul 28;35(30):3965-75.
    PMID: 26616855 DOI: 10.1038/onc.2015.466
    Interleukin-6 (IL-6) signaling network has been implicated in oncogenic transformations making it attractive target for the discovery of novel cancer therapeutics. In this study, potent antiproliferative and apoptotic effect of diacerein were observed against breast cancer. In vitro apoptosis was induced by this drug in breast cancer cells as verified by increased sub-G1 population, LIVE/DEAD assay, cell cytotoxicity and presence of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells, as well as downregulation of antiapoptotic proteins Bcl-2 and Bcl-xL and upregulation of apoptotic protein Bax. In addition, apoptosis induction was found to be caspase dependent. Further molecular investigations indicated that diacerein instigated apoptosis was associated with inhibition of IL-6/IL-6R autocrine signaling axis. Suppression of STAT3, MAPK and Akt pathways were also observed as a consequence of diacerein-mediated upstream inhibition of IL-6/IL-6R. Fluorescence study and western blot analysis revealed cytosolic accumulation of STAT3 in diacerein-treated cells. The docking study showed diacerein/IL-6R interaction that was further validated by competitive binding assay and isothermal titration calorimetry. Most interestingly, it was found that diacerein considerably suppressed tumor growth in MDA-MB-231 xenograft model. The in vivo antitumor effect was correlated with decreased proliferation (Ki-67), increased apoptosis (TUNEL) and inhibition of IL-6/IL-6R-mediated STAT3, MAPK and Akt pathway in tumor remnants. Taken together, diacerein offered a novel blueprint for cancer therapy by hampering IL-6/IL-6R/STAT3/MAPK/Akt network.
    Matched MeSH terms: Interleukin-6/antagonists & inhibitors*; Receptors, Interleukin-6/antagonists & inhibitors*
  5. WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group, Shankar-Hari M, Vale CL, Godolphin PJ, Fisher D, Higgins JPT, et al.
    JAMA, 2021 Aug 10;326(6):499-518.
    PMID: 34228774 DOI: 10.1001/jama.2021.11330
    IMPORTANCE: Clinical trials assessing the efficacy of IL-6 antagonists in patients hospitalized for COVID-19 have variously reported benefit, no effect, and harm.

    OBJECTIVE: To estimate the association between administration of IL-6 antagonists compared with usual care or placebo and 28-day all-cause mortality and other outcomes.

    DATA SOURCES: Trials were identified through systematic searches of electronic databases between October 2020 and January 2021. Searches were not restricted by trial status or language. Additional trials were identified through contact with experts.

    STUDY SELECTION: Eligible trials randomly assigned patients hospitalized for COVID-19 to a group in whom IL-6 antagonists were administered and to a group in whom neither IL-6 antagonists nor any other immunomodulators except corticosteroids were administered. Among 72 potentially eligible trials, 27 (37.5%) met study selection criteria.

    DATA EXTRACTION AND SYNTHESIS: In this prospective meta-analysis, risk of bias was assessed using the Cochrane Risk of Bias Assessment Tool. Inconsistency among trial results was assessed using the I2 statistic. The primary analysis was an inverse variance-weighted fixed-effects meta-analysis of odds ratios (ORs) for 28-day all-cause mortality.

    MAIN OUTCOMES AND MEASURES: The primary outcome measure was all-cause mortality at 28 days after randomization. There were 9 secondary outcomes including progression to invasive mechanical ventilation or death and risk of secondary infection by 28 days.

    RESULTS: A total of 10 930 patients (median age, 61 years [range of medians, 52-68 years]; 3560 [33%] were women) participating in 27 trials were included. By 28 days, there were 1407 deaths among 6449 patients randomized to IL-6 antagonists and 1158 deaths among 4481 patients randomized to usual care or placebo (summary OR, 0.86 [95% CI, 0.79-0.95]; P = .003 based on a fixed-effects meta-analysis). This corresponds to an absolute mortality risk of 22% for IL-6 antagonists compared with an assumed mortality risk of 25% for usual care or placebo. The corresponding summary ORs were 0.83 (95% CI, 0.74-0.92; P 6 antagonists, 0.74 (95% CI, 0.66-0.82) for tocilizumab, and 1.00 (95% CI, 0.74-1.34) for sarilumab. Secondary infections by 28 days occurred in 21.9% of patients treated with IL-6 antagonists vs 17.6% of patients treated with usual care or placebo (OR accounting for trial sample sizes, 0.99; 95% CI, 0.85-1.16).

    CONCLUSIONS AND RELEVANCE: In this prospective meta-analysis of clinical trials of patients hospitalized for COVID-19, administration of IL-6 antagonists, compared with usual care or placebo, was associated with lower 28-day all-cause mortality.

    TRIAL REGISTRATION: PROSPERO Identifier: CRD42021230155.

    Matched MeSH terms: Interleukin-6/antagonists & inhibitors*
  6. Bukhari SN, Zhang X, Jantan I, Zhu HL, Amjad MW, Masand VH
    Chem Biol Drug Des, 2015 Jun;85(6):729-42.
    PMID: 25328063 DOI: 10.1111/cbdd.12457
    A novel series of 1,3-diphenyl-2-propen-1-one (chalcone) derivatives was synthesized by a simple, eco-friendly, and efficient Claisen-Schmidt condensation reaction and used as precursors for the synthesis of new pyrazoline derivatives. All the synthesized compounds were screened for anti-inflammatory related activities such as inhibition of phospholipase A(2) (PLA(2)), cyclooxygenases (COX-1 and COX-2), IL-6, and TNF-α. The results of the above studies show that the compounds synthesized are effective inhibitors of above pro-inflammatory enzymes and cytokines. Overall, the results of the studies reveal that the pyrazolines with chlorophenyl substitution (1b-6b) seem to be important for inhibition of enzymes and cytokines. Molecular docking experiments were performed to clarify the molecular aspects of the observed COX-inhibitory activities of the investigated compounds.
    Matched MeSH terms: Interleukin-6/antagonists & inhibitors
  7. Bukhari SN, Lauro G, Jantan I, Bifulco G, Amjad MW
    Bioorg Med Chem, 2014 Aug 1;22(15):4151-61.
    PMID: 24938495 DOI: 10.1016/j.bmc.2014.05.052
    Arachidonic acid and its metabolites have generated high level of interest among researchers due to their vital role in inflammation. The inhibition of enzymes involved in arachidonic acid metabolism has been considered as synergistic anti-inflammatory effect. A series of novel α,β-unsaturated carbonyl based compounds were synthesized and evaluated for their inhibitory activity on secretory phospholipase A₂ (sPLA₂), cyclooxygenases (COX), soybean lipoxygenase (LOX) in addition to proinflammatory cytokines comprising IL-6 and TNF-α. Six α,β-unsaturated carbonyl based compounds (2, 3, 4, 12, 13 and 14) exhibited strong inhibition of sPLA₂ activity, with IC₅₀ values in the range of 2.19-8.76 μM. Nine compounds 1-4 and 10-14 displayed inhibition of COX-1 with IC₅₀ values ranging from 0.37 to 1.77 μM (lower than that of reference compound), whereas compounds 2, 10, 13 and 14 strongly inhibited the COX-2. The compounds 10-14 exhibited strong inhibitory activity against LOX enzyme. All compounds were evaluated for the inhibitory activities against LPS-induced TNF-α and IL-6 release in the macrophages. On the basis of screening results, five active compounds 3, 4, 12, 13 and 14 were found strong inhibitors of TNF-α and IL-6 release in a dose-dependent manner. Molecular docking experiments were performed to clarify the molecular aspects of the observed COX and LOX inhibitory activities of the investigated compounds. Present findings increases the possibility that these α,β-unsaturated carbonyl based compounds might serve as beneficial starting point for the design and development of improved anti-inflammatory agents.
    Matched MeSH terms: Interleukin-6/antagonists & inhibitors*
  8. Pandurangan AK, Mohebali N, Hasanpourghadi M, Looi CY, Mustafa MR, Mohd Esa N
    Biofactors, 2016 May;42(3):247-58.
    PMID: 26891685 DOI: 10.1002/biof.1267
    Ulcerative colitis (UC) is a nonspecific inflammatory disorder characterized by oxidative and nitrosative stress, leucocyte infiltration, and upregulation of inflammatory mediators. Boldine is an alkaloid compound found in Boldo tree, with multiple pharmacological actions, mainly anti-inflammatory, antioxidant, antitumor, and immunomodulatory activities. Hence, the effect of boldine for its anti-inflammatory properties against dextran sulfate sodium (DSS)-induced UC in BALB/c mice was studied. Administration of boldine to DSS-induced mice protects colon damage by reduced disease activity index, spleen weight, and increased colon length. Also administration of boldine showed a reduction in the activity of myeloperoxidase (MPO) and CD 68+ expression. Boldine reduced the colon damage, with significant reductions in both the extent and the severity of the inflammation as well as in crypt damage and leukocyte infiltration in the mucosa. Analysis in vivo showed clear decrease in the production of tumor necrosis factor (TNF)-α, Interleukin (IL)-6, IL-17, and signal transducer and activator of transcription-(p-STAT3)(Y705) with nuclear factor (p65-NF-κB) production being reduced significantly. Moreover, p65-NF-κB activation was reduced in mouse macrophage RAW 264.7 cells in vitro. The data demonstrated that boldine may be beneficial in colitis through selective immunomodulatory effects, which may be mediated, at least in part, by inhibition of p65-NF-κB and STAT3 signaling pathways. © 2016 BioFactors, 42(3):247-258, 2016.
    Matched MeSH terms: Interleukin-6/antagonists & inhibitors
  9. Nawawi H, Osman NS, Yusoff K, Khalid BA
    Horm. Metab. Res., 2003 Aug;35(8):479-85.
    PMID: 12953165 DOI: 10.1055/s-2003-41805
    Hypercholesterolemia causes endothelial dysfunction, an early feature of atherosclerosis, leading to increased production of adhesion molecules and cytokines. The aim of this study was to investigate the effects of three months of treatment with low dose atorvastatin on serum levels of adhesion molecules, interleukin-6 (IL-6) and highly sensitive C-reactive protein (hs-CRP) in patients with non-familial hypercholesterolemia. Fifty-five patients with non-familial hypercholesterolemia were randomized to treatment with atorvastatin 10 mg/day or placebo for 3 months. Soluble intercellular adhesion molecules-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E-selectin, IL-6 and hs-CRP levels were measured to assess the inflammatory activity of the endothelium. There was a significant reduction in ICAM-1 at 2 weeks (p<0.0001) with further reduction at 3 months (p<0.0001). At 3 months, there were significant reductions in VCAM-1 (p<0.02), IL-6 (p<0.0001) and hs-CRP (p<0.01), but an increase in E-selectin levels (p<0.002). Treatment with statin was an independent determinant of change in ICAM-1 (p<0.05) and IL-6 levels (p<0.05) after correcting for anthropometric indices, blood pressure and lipid profile. Low-dose atorvastatin treatment leads to reduction in proinflammatory markers of endothelial function, suggesting an attenuation of endothelial activation and improvement in endothelial function, independent of lipid lowering. This may lead to a reduction in the progression of atherosclerosis.
    Matched MeSH terms: Interleukin-6/antagonists & inhibitors
  10. Liew CY, Tham CL, Lam KW, Mohamad AS, Kim MK, Cheah YK, et al.
    Immunopharmacol Immunotoxicol, 2010 Sep;32(3):495-506.
    PMID: 20109039 DOI: 10.3109/08923970903575708
    HMP [3-(2-hydroxyphenyl)-1-(5-methyl-furan-2-y-l) propenone] was evaluated for its ability to inhibit the synthesis of major proinflammatory mediators and cytokines in interferon-gamma (IFN-gamma)- and lipopolysaccharide (LPS)-induced RAW 264.7 cells and phorbol myristate acetate (PMA)-differentiated/LPS-induced U937 cells. HMP suppressed the production of nitric oxide (NO) with significant inhibitory effects at doses as low as 0.78 microM (P < 0.05). Prostaglandin E2 (PGE2) secretion was also inhibited at doses of 12.5 microM and above (P < 0.01). The secretion of both TNF-alpha and IL-6 were only inhibited at the highest dose used (25 microM; P < 0.001). IL-1beta secretion was also inhibited from 12.5 microM onwards (P < 0.01). This inhibition was demonstrated to be caused by down-regulation of inducible enzymes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), without direct effect upon iNOS or COX-2 enzyme activity. HMP only inhibited iNOS (P < 0.001) and IL-1beta (P < 0.05) gene expression at the highest tested concentration. HMP did not affect the secretion of chemokines IL-8 and monocyte chemotactic protein-1 (MCP-1) and the anti-inflammatory cytokine IL-10. The most striking effect of HMP was its NO inhibitory activity and therefore we conclude that HMP is a selective inhibitor of iNOS.
    Matched MeSH terms: Interleukin-6/antagonists & inhibitors
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links