Recent advances in immunology enabled the characterization of several signal transmitting pathways responsible for proper cytokine and chemokine signaling. Among them, Janus kinases (JAKs) are essential components of receptor activation systems. The discovery of JAK kinases enabled the synthesis of JAK kinase inhibitors (JAKi or Jakinibs), which have proven to be efficacious in the treatment of hematologic malignancies and several rheumatological disorders and continue to be investigated in many clinical indications. Blocking multiple cytokines belonging to several cytokine families with a single small molecule may, however, create a potential risk for the patients. Recently, a higher risk of thromboembolic complications, namely, deep vein thrombosis and pulmonary embolism, has been recognized as the main concern during treatment with Jakinibs. At present, it is not entirely clear whether this increased risk is related to direct cytokine blockade, the presence of concomitant diseases in treated patients or other unknown circumstances that work together to increase the risk of this side effect. In this review, we discuss data on the risk of thromboembolic side effects, with special emphasis on the mechanism that may be responsible for this increased risk. Many indirect data indicate that higher thromboembolic risk may be related to the specificity of JAK inhibitor action, such that preferentially blocking one signaling pathway upsets the balance between pro and anti-thrombotic activities.
Ruxolitinib is the first janus kinase 1 (JAK1) and JAK2 inhibitor that was approved by the United States Food and Drug Administration (FDA) agency for the treatment of myeloproliferative neoplasms. The drug targets the JAK/STAT signalling pathway, which is critical in regulating the gliogenesis process during nervous system development. In the study, we assessed the effect of non-maternal toxic dosages of ruxolitinib (0-30 mg/kg/day between E7.5-E20.5) on the brain of the developing mouse embryos. While the pregnant mice did not show any apparent adverse effects, the Gfap protein marker for glial cells and S100β mRNA marker for astrocytes were reduced in the postnatal day (P) 1.5 pups' brains. Gfap expression and Gfap+ cells were also suppressed in the differentiating neurospheres culture treated with ruxolitinib. Compared to the control group, adult mice treated with ruxolitinib prenatally showed no changes in motor coordination, locomotor function, and recognition memory. However, increased explorative behaviour within an open field and improved spatial learning and long-term memory retention were observed in the treated group. We demonstrated transplacental effects of ruxolitinib on astrogenesis, suggesting the potential use of ruxolitinib to revert pathological conditions caused by gliogenic-shift in early brain development such as Down and Noonan syndromes.