Displaying all 3 publications

Abstract:
Sort:
  1. Abduraman MA, Azizan NA, Teoh SH, Tan ML
    Obes Res Clin Pract, 2020 12 25;15(1):10-18.
    PMID: 33371997 DOI: 10.1016/j.orcp.2020.12.001
    Obesity is a serious chronic disease and a public health concern in both developing and developed countries. Managing obesity has been a great challenge for both health care professionals and patients alike. Among the various diet programs aimed at promoting weight loss, the ketogenic diet, a diet high in fat and low in carbohydrates, has been at the forefront recently and its mechanism in weight loss is much debated. Activation of Sirtuin 1 or SIRT1 is able to circumvent various diseases, including metabolic syndrome and obesity and is thought to be a potentially reliable treatment target for both of them. Augmentation of SIRT1 may be carried out using dietary means such as nicotinamide adenine dinucleotide (NAD) supplementation and/or ketogenic diet. Although ketogenic diet may augment SIRT1 activation in people affected by obesity, recent studies have indicated that the relationship between SIRT1 and ketogenesis is unpredictable. The exact circumstances and mechanisms of SIRT1, NAD and ketogenesis in the clinical setting as an intervention tool in managing obesity remained uncertain. Although several recent literatures have documented significant weight-loss following ketogenic diet interventions, there were limitations with regards to duration of trial, choice and the number of trial subjects. Studies investigating the safety of ketogenic diet in the long term, beyond 46 weeks and related mechanism and pathways are still lacking and the sustainability of this diet remains to be determined. This review explores the recent progress on ketogenic diet and its relationships with SIRT1 as a tool in managing obesity and relevant clinical implications.
    Matched MeSH terms: Ketogenic Diet*
  2. Vijayam B, Malarvili MB, Md Shakhih MF, Omar N, Wahab AA
    Clin Nutr ESPEN, 2021 04;42:124-131.
    PMID: 33745565 DOI: 10.1016/j.clnesp.2021.02.005
    BACKGROUND & AIMS: Previous studies have shown that end-tidal carbon dioxide (EtCO2) is lower with the presence of supraphysiological ketones as in the case of chronic ketogenic diet (KD) and diabetic ketoacidosis (DKA). This study aimed to determine changes in EtCO2 upon short term KD.

    METHODS: Healthy subjects were screened not to have conditions that exerts abnormal EtCO2 nor contraindicated for KD. Subjects underwent seven days of KD while the EtCO2 and blood ketone (beta-hydroxybutyrate; β-OHB) parameters were sampled at day zero (t0) and seven (t7) of ketosis respectively. Statistically, the t-test and Pearson's coefficient were conducted to determine the changes and correlation of both parameters.

    RESULTS: 12 subjects completed the study. The mean score ± standard deviation (SD) for EtCO2 were 35.08 ± 3.53 and 35.67 ± 3.31 mm Hg for t0 and t7 respectively. The mean score ±SD for β-OHB were 0.07 ± 0.08 and 0.87 ± 0.84 mmol/L for t0 and t7 respectively. There was no significant difference of EtCO2 between the period of study (p > 0.05) but the β-OHB increased during t7 (p 

    Matched MeSH terms: Ketogenic Diet*
  3. Patikorn C, Saidoung P, Pham T, Phisalprapa P, Lee YY, Varady KA, et al.
    BMC Med, 2023 May 25;21(1):196.
    PMID: 37231411 DOI: 10.1186/s12916-023-02874-y
    BACKGROUND: Systematic reviews and meta-analyses of randomized clinical trials (RCTs) have reported the benefits of ketogenic diets (KD) in various participants such as patients with epilepsy and adults with overweight or obesity. Nevertheless, there has been little synthesis of the strength and quality of this evidence in aggregate.

    METHODS: To grade the evidence from published meta-analyses of RCTs that assessed the association of KD, ketogenic low-carbohydrate high-fat diet (K-LCHF), and very low-calorie KD (VLCKD) with health outcomes, PubMed, EMBASE, Epistemonikos, and Cochrane database of systematic reviews were searched up to February 15, 2023. Meta-analyses of RCTs of KD were included. Meta-analyses were re-performed using a random-effects model. The quality of evidence per association provided in meta-analyses was rated by the GRADE (Grading of Recommendations, Assessment, Development, and Evaluations) criteria as high, moderate, low, and very low.

    RESULTS: We included 17 meta-analyses comprising 68 RCTs (median [interquartile range, IQR] sample size of 42 [20-104] participants and follow-up period of 13 [8-36] weeks) and 115 unique associations. There were 51 statistically significant associations (44%) of which four associations were supported by high-quality evidence (reduced triglyceride (n = 2), seizure frequency (n = 1) and increased low-density lipoprotein cholesterol (LDL-C) (n = 1)) and four associations supported by moderate-quality evidence (decrease in body weight, respiratory exchange ratio (RER), hemoglobin A1c, and increased total cholesterol). The remaining associations were supported by very low (26 associations) to low (17 associations) quality evidence. In overweight or obese adults, VLCKD was significantly associated with improvement in anthropometric and cardiometabolic outcomes without worsening muscle mass, LDL-C, and total cholesterol. K-LCHF was associated with reduced body weight and body fat percentage, but also reduced muscle mass in healthy participants.

    CONCLUSIONS: This umbrella review found beneficial associations of KD supported by moderate to high-quality evidence on seizure and several cardiometabolic parameters. However, KD was associated with a clinically meaningful increase in LDL-C. Clinical trials with long-term follow-up are warranted to investigate whether the short-term effects of KD will translate to beneficial effects on clinical outcomes such as cardiovascular events and mortality.

    Matched MeSH terms: Ketogenic Diet*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links