The most critical issues faced by the world nowadays is to provide the sustainability of consumption for energy and natural resources. Lignin is said to be one of the alternative new discoveries best-suited lignocellulosic biomass due to its low cost, sufficient availability and environmentally safe. The valuable properties exhibited by lignin can give broader applications usage such as in composite materials, wood industries, polymer composite industries, pharmaceutical and corrosion inhibitor industries. Many biomass wastes resources, isolation processes and treatments are undergoing development in order to enhance the producing new lignin-based materials on an industrial scale. Therefore, this review discussed on the current knowledge on the structure and chemistry of isolation of lignin from different sources using various common methods, its characterization, properties and its applications.
Nanocellulose is a renewable and biocompatible nanomaterial that evokes much interest because of its versatility in various applications. This study reports the production of nanocellulose from Agave gigantea (AG) fiber using the chemical-ultrafine grinding treatment. Chemical treatment (alkalization and bleaching) removed non-cellulose components (hemicellulose and lignin), while ultrafine grinding reduced the size of cellulose microfibrils into nanocellulose. From the observation of Transmission Electron Microscopy, the average diameter of nanocellulose was 4.07 nm. The effect of chemical-ultrafine grinding on the morphology and properties of AG fiber was identified using chemical composition, Scanning Electron Microscopy, X-ray Diffraction, Fourier Transform Infrared, and Thermogravimetric Analysis. The bleaching treatment increased the crystal index by 48.3% compared to raw AG fiber, along with an increase in the cellulose content of 20.4%. The ultrafine grinding process caused a decrease in the crystal content of the AG fiber. The crystal index affected the thermal stability of the AG fiber. The TGA results showed that AG fiber treated with bleaching showed the highest thermal stability compared to AG fiber without treatment. The FTIR analysis showed that the presence of CH vibrations from the ether in the fiber. After chemical treatment, the peaks at 1605 and 1243 cm-1 disappeared, indicating the loss of lignin and hemicellulose functional groups in AG fiber. As a result, nanocellulose derived from AG fiber can be applied as reinforcement in environmentally friendly polymer biocomposites.
This work reports on a complete isolation and characterization of lignocellulosic compounds from oil palm empty fruit bunch (OPEFB) by ionic liquid (IL) treatment and alkaline treatment processes. The fractionated lignocellulosic compounds were confirmed by FTIR and CP/MAS 13CNMR analyses. The yield of the cellulose, hemicellulose and lignin fractions was 52.72±1.50% wt., 27.17±1.68% wt. and 16.82±1.15% wt. with molecular weight of 1869g/mol, 1736g/mol and 2695g/mol, and degradation temperature of 325.65°C, 236.25°C, and 201.40°C, respectively. The SEM image illustrates the bundle-like fiber of cellulose fraction and smaller particle size of hemicellulose and lignin fractions with inconsistent shape. The XRD patterns depict the crystalline cellulose, amorphous lignin and partially amorphous hemicellulose fractions property. The IL could be recovered and reused with an overall recovery of 48% wt. after the fourth cycle.
The enhancement of lignocellulose hydrolysis using enzyme complexes requires an efficient pretreatment process to obtain susceptible conditions for the enzyme attack. This study focuses on removing a major part of the lignin layer from kenaf (Hibiscus cannabinus) while simultaneously maintaining most of the hemicellulose. A two-stage pretreatment process is adopted using calcium hydroxide, Ca(OH)₂, and peracetic acid, PPA, to break the recalcitrant lignin layer from other structural polysaccharides. An experimental screening of several pretreatment chemicals, concentrations, temperatures and solid-liquid ratios enabled the production of an optimally designed pretreatment process for kenaf. Our results showed that the pretreatment process has provide 59.25% lignin removal while maintaining 87.72% and 96.17% hemicellulose and cellulose, respectively, using 1g of Ca(OH)₂/L and a 8:1 (mL:g) ratio of liquid-Ca(OH)₂ at 50 °C for 1.5 h followed by 20% peracetic acid pretreatment at 75 °C for 2 h. These results validate this mild approach for aiding future enzymatic hydrolysis.
This study demonstrated the effect of two-pot sequential pretreatment, comprising of ultrasound assisted deep eutectic solvent (DES) with the aim to investigate the effects of ultrasound amplitude and duration in enhancing delignification. Oil palm fronds (OPF) were ultrasonicated in a water medium, followed by a pretreatment using DES (choline chloride:urea). Fourier transform infra-red spectroscopy, X-ray diffraction, field emission scanning electron microscope, Brunauer-Emmet-Teller and solubilised lignin concentration were conducted to confirm the effectiveness of ultrasound assisted DES on the pretreatment of OPF. The recommended ultrasound conditions were determined to be 70% amplitude and duration of 30 min, where the sequential DES pretreatment was able to reduce lignin content of OPF to 14.01%, while improving xylose recovery by 58%.