Displaying all 2 publications

Abstract:
Sort:
  1. Chin GS, Todo H, Kadhum WR, Hamid MA, Sugibayashi K
    Chem Pharm Bull (Tokyo), 2016;64(12):1666-1673.
    PMID: 27904075
    The current investigation evaluated the potential of proniosome as a carrier to enhance skin permeation and skin retention of a highly lipophilic compound, α-mangostin. α-Mangostin proniosomes were prepared using the coacervation phase seperation method. Upon hydration, α-mangostin loaded niosomes were characterized for size, polydispersity index (PDI), entrapment efficiency (EE) and ζ-potential. The in vitro permeation experiments with dermis-split Yucatan Micropig (YMP) skin revealed that proniosomes composed of Spans, soya lecithin and cholesterol were able to enhance the skin permeation of α-mangostin with a factor range from 1.8- to 8.0-fold as compared to the control suspension. Furthermore, incorporation of soya lecithin in the proniosomal formulation significantly enhanced the viable epidermis/dermis (VED) concentration of α-mangostin. All the proniosomal formulations (except for S20L) had significantly (p<0.05) enhanced deposition of α-mangostin in the VED layer with a factor range from 2.5- to 2.9-fold as compared to the control suspension. Since addition of Spans and soya lecithin in water improved the solubility of α-mangostin, this would be related to the enhancement of skin permeation and skin concentration of α-mangostin. The choice of non-ionic surfactant in proniosomes is an important factor governing the skin permeation and skin retention of α-mangostin. These results suggested that proniosomes can be utilized as a carrier for highly lipophilic compound like α-mangostin for topical application.
    Matched MeSH terms: Liposomes/pharmacokinetics*
  2. Shafaei A, Esmailli K, Farsi E, Aisha AF, Abul Majid AM, Ismail Z
    PMID: 26467526 DOI: 10.1186/s12906-015-0885-z
    Orthosiphon stamineus (OS) Benth is a medicinal plant and native in Southeast Asia. Pharmacological effects of OS are attributed to the presence of lipophilic flavones. However; lipophilic compounds suffer from poor aqueous solubility which limits the OS oral bioavailability and therapeutic applications. Therefore, OS was prepared in nano formulation form using liposomes from soybean phospholipids. The aim of the present study is to evaluate the in vitro genotoxicity and in vivo oral toxicity of nano liposomes of OS ethanolic extract (OS-EL).
    Matched MeSH terms: Liposomes/pharmacokinetics
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links