Displaying all 10 publications

Abstract:
Sort:
  1. Nevame AYM, Xia L, Nchongboh CG, Hasan MM, Alam MA, Yongbo L, et al.
    Biomed Res Int, 2018;2018:8120281.
    PMID: 30105248 DOI: 10.1155/2018/8120281
    Tomato yellow leaf curl virus (TYLCV) responsible for tomato yellow leaf curl disease (TYLCD) causes a substantial decrease in tomato (Solanum lycopersicum L.) yield worldwide. The use of resistant variety as a sustainable management strategy has been advocated. Tremendous progress has been made in genetically characterizing the resistance genes (R gene) in tomato. Breeding tomato for TYLCV resistance has been based mostly on Ty-3 as a race-specific resistance gene by introgression originating from wild tomato species relatives. Improvement or development of a cultivar is achievable through the use of marker-assisted selection (MAS). Therefore, precise and easy use of gene-targeted markers would be of significant importance for selection in breeding programs. The present study was undertaken to develop a new marker based on Ty-3 gene sequence that can be used for MAS in TYLCV resistant tomato breeding program. The new developed marker was named ACY. The reliability and accuracy of ACY were evaluated against those of Ty-3 linked marker P6-25 through screening of commercial resistant and susceptible tomato hybrids, and genetic segregation using F2 population derived from a commercial resistant hybrid AG208. With the use of bioinformatics and DNA sequencing analysis tools, deletion of 10 nucleotides was observed in Ty-3 gene sequence for susceptible tomato variety. ACY is a co-dominant indel-based marker that produced clear and strong polymorphic band patterns for resistant plant distinguishing it from its susceptible counterpart. The obtained result correlates with 3:1 segregation ratio of single resistant dominant gene inheritance, which depicted ACY as gene-tag functional marker. This marker is currently in use for screening 968 hybrids varieties and one thousand breeding lines of tomato varieties stocked in Jiangsu Green Port Modern Agriculture Development Company (Green Port). So far, ACY has been used to identify 56 hybrids and 51 breeding lines. These newly detected breeding lines were regarded as potential source of resistance for tomato breeding. This work exploited the sequence of Ty-3 and subsequently contributed to the development of molecular marker ACY to aid phenotypic selection. We thus recommend this marker to breeders, which is suitable for marker-assisted selection in tomato.
    Matched MeSH terms: Lycopersicon esculentum/genetics*
  2. Chew BL, Fisk ID, Fray R, Tucker GA, Bodi Z, Ferguson A, et al.
    Plant Cell Rep, 2017 Jan;36(1):81-87.
    PMID: 27662835 DOI: 10.1007/s00299-016-2058-z
    KEY MESSAGE: This study highlights the changes in umami-related nucleotide and glutamate levels when the AMP deaminase gene was elevated in transgenic tomato. Taste is perceived as one of a combination of five sensations, sweet, sour, bitter, salty, and umami. The umami taste is best known as a savoury sensation and plays a central role in food flavour, palatability, and eating satisfaction. Umami flavour can be imparted by the presence of glutamate and is greatly enhanced by the addition of ribonucleotides, such as inosine monophosphate (IMP) and guanosine monophosphate (GMP). The production of IMP is regulated by the enzyme adenosine monophosphate (AMP) deaminase which functions to convert AMP into IMP. We have generated transgenic tomato (Solanum lycopersicum) lines over expressing AMP deaminase under the control of a fruit-specific promoter. The transgenic lines showed substantially enhanced levels of AMP deaminase expression in comparison to the wild-type control. Elevated AMP deaminase levels resulted in the reduced accumulation of glutamate and increased levels of the umami nucleotide GMP. AMP concentrations were unchanged. The effects on the levels of glutamate and GMP were unexpected and are discussed in relation to the metabolite flux within this pathway.
    Matched MeSH terms: Lycopersicon esculentum/genetics
  3. Tam SM, Samipak S, Britt A, Chetelat RT
    Genetica, 2009 Dec;137(3):341-54.
    PMID: 19690966 DOI: 10.1007/s10709-009-9398-3
    DNA mismatch repair proteins play an essential role in maintaining genomic integrity during replication and genetic recombination. We successfully isolated a full length MSH2 and partial MSH7 cDNAs from tomato, based on sequence similarity between MutS and plant MSH homologues. Semi-quantitative RT-PCR reveals higher levels of mRNA expression of both genes in young leaves and floral buds. Genetic mapping placed MSH2 and MSH7 on chromosomes 6 and 7, respectively, and indicates that these genes exist as single copies in the tomato genome. Analysis of protein sequences and phylogeny of the plant MSH gene family show that these proteins are evolutionarily conserved, and follow the classical model of asymmetric protein evolution. Genetic manipulation of the expression of these MSH genes in tomato will provide a potentially useful tool for modifying genetic recombination and hybrid fertility between wide crosses.
    Matched MeSH terms: Lycopersicon esculentum/genetics*
  4. Cherian S, Figueroa CR, Nair H
    J Exp Bot, 2014 Sep;65(17):4705-22.
    PMID: 24994760 DOI: 10.1093/jxb/eru280
    Fruit ripening is a complex and highly coordinated developmental process involving the expression of many ripening-related genes under the control of a network of signalling pathways. The hormonal control of climacteric fruit ripening, especially ethylene perception and signalling transduction in tomato has been well characterized. Additionally, great strides have been made in understanding some of the major regulatory switches (transcription factors such as RIPENING-INHIBITOR and other transcriptional regulators such as COLOURLESS NON-RIPENING, TOMATO AGAMOUS-LIKE1 and ETHYLENE RESPONSE FACTORs), that are involved in tomato fruit ripening. In contrast, the regulatory network related to non-climacteric fruit ripening remains poorly understood. However, some of the most recent breakthrough research data have provided several lines of evidences for abscisic acid- and sucrose-mediated ripening of strawberry, a non-climacteric fruit model. In this review, we discuss the most recent research findings concerning the hormonal regulation of fleshy fruit ripening and their cross-talk and the future challenges taking tomato as a climacteric fruit model and strawberry as a non-climacteric fruit model. We also highlight the possible contribution of epigenetic changes including the role of plant microRNAs, which is opening new avenues and great possibilities in the fields of fruit-ripening research and postharvest biology.
    Matched MeSH terms: Lycopersicon esculentum/genetics
  5. Wang D, Samsulrizal NH, Yan C, Allcock NS, Craigon J, Blanco-Ulate B, et al.
    Plant Physiol, 2019 02;179(2):544-557.
    PMID: 30459263 DOI: 10.1104/pp.18.01187
    Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shelf life is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a range of pectin-degrading enzymes are involved in cell wall remodeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here we report the generation of CRISPR-based mutants in the ripening-related genes encoding the pectin-degrading enzymes pectate lyase (PL), polygalacturonase 2a (PG2a), and β-galactanase (TBG4). Comparison of the physiochemical properties of the fruits from a range of PL, PG2a, and TBG4 CRISPR lines demonstrated that only mutations in PL resulted in firmer fruits, although mutations in PG2a and TBG4 influenced fruit color and weight. Pectin localization, distribution, and solubility in the pericarp cells of the CRISPR mutant fruits were investigated using the monoclonal antibody probes LM19 to deesterified homogalacturonan, INRA-RU1 to rhamnogalacturonan I, LM5 to β-1,4-galactan, and LM6 to arabinan epitopes, respectively. The data indicate that PL, PG2a, and TBG4 act on separate cell wall domains and the importance of cellulose microfibril-associated pectin is reflected in its increased occurrence in the different mutant lines.
    Matched MeSH terms: Lycopersicon esculentum/genetics
  6. Behboodian B, Mohd Ali Z, Ismail I, Zainal Z
    ScientificWorldJournal, 2012;2012:439870.
    PMID: 22919320 DOI: 10.1100/2012/439870
    The plant hormone, ethylene, is an important regulator which involved in regulating fruit ripening and flower senescence. In this study, RNA interference (RNAi) technology was employed to silence the genes involved in ethylene biosynthetic pathway. This was achieved by blocking the expression of specific gene encoding the ACC oxidase. Initially, cDNA corresponding to ACO1 of lowland tomato cultivar (MT1), which has high identity with ACO1 of Solanum lycopersicum in GenBank, was cloned through RT-PCR. Using a partial coding region of ACO1, one hpRNAi transformation vector was constructed and expressed ectopically under the 35S promoter. Results showed that transgenic lines harboring the hpRNA-ACO1 construct had lower ethylene production and a longer shelf life of 32 days as compared to 10 days for wild-type fruits. Changes in cell wall degrading enzyme activities were also investigated in cases where the transgenic fruits exhibited reduced rates of firmness loss, which can be associated with a decrease in pectin methylesterase (PME) and polygalacturonase (PG) activities. However, no significant change was detected in both transgenic and wild-type fruits in terms of β-galactosidase (β-Gal) activity and levels of total soluble solid, titratable acid and ascorbic acid.
    Matched MeSH terms: Lycopersicon esculentum/genetics
  7. Saed Taha R, Ismail I, Zainal Z, Abdullah SN
    J Plant Physiol, 2012 Sep 01;169(13):1290-300.
    PMID: 22658816 DOI: 10.1016/j.jplph.2012.05.001
    The stearoyl-acyl-carrier-protein (ACP) desaturase is a plastid-localized enzyme that catalyzes the conversion of stearoyl-ACP to oleoyl-ACP and plays an important role in the determination of the properties of the majority of cellular glycerolipids. Functional characterization of the fatty acid desaturase genes and their specific promoters is a prerequisite for altering the composition of unsaturated fatty acids of palm oil by genetic engineering. In this paper, the specificity and strength of the oil palm stearoyl-ACP desaturase gene promoter (Des) was evaluated in transgenic tomato plants. Transcriptional fusions between 5' deletions of the Des promoter (Des1-4) and the β-glucuronidase (GUS) reporter gene were generated and their expression analyzed in different tissues of stably transformed tomato plants. Histochemical analysis of the Des promoter deletion series revealed that GUS gene expression was confined to the tomato fruits. No expression was detected in vegetative tissues of the transgenic plants. The highest levels of GUS activity was observed in different tissues of ripe red fruits (vascular tissue, septa, endocarp, mesocarp and columella) and in seeds, which harbored the promoter region located between -590 and +10. A comparison of the promoter-deletion constructs showed that the Des4 promoter deletion (314bp) produced a markedly low level of GUS expression in fruits and seeds. Fluorometric analysis of the GUS activity revealed a 4-fold increase in the activity of the full-length Des promoter compared to the CaMV35S promoter. RNA-hybridization analyses provided additional evidence of increased GUS expression in fruits driven by a Des fragment. Taken together, these results demonstrate the potential of the Des promoter as a tool for the genetic engineering of oil palms and other species, including dicots, in improving the quality and nutritional value of the fruits.
    Matched MeSH terms: Lycopersicon esculentum/genetics*
  8. Kamaladini H, Nor Akmar Abdullah S, Aziz MA, Ismail IB, Haddadi F
    J Plant Physiol, 2013 Feb 15;170(3):346-54.
    PMID: 23290536 DOI: 10.1016/j.jplph.2012.10.017
    Metallothioneins (MTs) are cysteine-rich metal-binding proteins that are involved in cell growth regulation, transportation of metal ions and detoxification of heavy metals. A mesocarp-specific metallothionein-like gene (MT3-A) promoter was isolated from the oil palm (Elaeis guineensis Jacq). A vector construct containing the MT3-A promoter fused to the β-glucuronidase (GUS) gene in the pCAMBIA 1304 vector was produced and used in Agrobacterium-mediated transformation of tomato. Histochemical GUS assay of different tissues of transgenic tomato showed that the MT3-A promoter only drove GUS expression in the reproductive tissues and organs, including the anther, fruit and seed coat. Competitive RT-PCR and GUS fluorometric assay showed changes in the level of GUS mRNA and enzyme activity in the transgenic tomato (T(0)). No GUS mRNA was found in roots and leaves of transgenic tomato. In contrast, the leaves of transgenic tomato seedlings (T(1)) produced the highest GUS activity when treated with 150 μM Cu(2+) compared to the control (without Cu(2+)). However, Zn(2+) and Fe(2+) treatments did not show GUS expression in the leaves of the transgenic tomato seedlings. Interestingly, the results showed a breaking-off tissue-specific activity of the oil palm MT3-A promoter in T(1) seedlings of tomato when subjected to Cu(2+) ions.
    Matched MeSH terms: Lycopersicon esculentum/genetics*
  9. Ebrahimi M, Abdullah SN, Abdul Aziz M, Namasivayam P
    J Plant Physiol, 2016 Sep 01;202:107-20.
    PMID: 27513726 DOI: 10.1016/j.jplph.2016.07.001
    CBF/DREB1 is a group of transcription factors that are mainly involved in abiotic stress tolerance in plants. They belong to the AP2/ERF superfamily of plant-specific transcription factors. A gene encoding a new member of this group was isolated from ripening oil palm fruit and designated as EgCBF3. The oil palm fruit demonstrates the characteristics of a climacteric fruit like tomato, in which ethylene has a major impact on the ripening process. A transgenic approach was used for functional characterization of the EgCBF3, using tomato as the model plant. The effects of ectopic expression of EgCBF3 were analyzed based on expression profiling of the ethylene biosynthesis-related genes, anti-freeze proteins (AFPs), abiotic stress tolerance and plant growth and development. The EgCBF3 tomatoes demonstrated altered phenotypes compared to the wild type tomatoes. Delayed leaf senescence and flowering, increased chlorophyll content and abnormal flowering were the consequences of overexpression of EgCBF3 in the transgenic tomatoes. The EgCBF3 tomatoes demonstrated enhanced abiotic stress tolerance under in vitro conditions. Further, transcript levels of ethylene biosynthesis-related genes, including three SlACSs and two SlACOs, were altered in the transgenic plants' leaves and roots compared to that in the wild type tomato plant. Among the eight AFPs studied in the wounded leaves of the EgCBF3 tomato plants, transcript levels of SlOSM-L, SlNP24, SlPR5L and SlTSRF1 decreased, while expression of the other four, SlCHI3, SlPR1, SlPR-P2 and SlLAP2, were up-regulated. These findings indicate the possible functions of EgCBF3 in plant growth and development as a regulator of ethylene biosynthesis-related and AFP genes, and as a stimulator of abiotic stress tolerance.
    Matched MeSH terms: Lycopersicon esculentum/genetics
  10. Azzeme AM, Abdullah SNA, Aziz MA, Wahab PEM
    Plant Physiol Biochem, 2017 Mar;112:129-151.
    PMID: 28068641 DOI: 10.1016/j.plaphy.2016.12.025
    Dehydration-responsive element binding (DREB) transcription factor plays an important role in controlling the expression of abiotic stress responsive genes. An intronless oil palm EgDREB1 was isolated and confirmed to be a nuclear localized protein. Electrophoretic mobility shift and yeast one-hybrid assays validated its ability to interact with DRE/CRT motif. Its close evolutionary relation to the dicot NtDREB2 suggests a universal regulatory role. In order to determine its involvement in abiotic stress response, functional characterization was performed in oil palm seedlings subjected to different levels of drought severity and in EgDREB1 transgenic tomato seedlings treated by abiotic stresses. Its expression in roots and leaves was compared with several antioxidant genes using quantitative real-time PCR. Early accumulation of EgDREB1 in oil palm roots under mild drought suggests possible involvement in the initiation of signaling communication from root to shoot. Ectopic expression of EgDREB1 in T1 transgenic tomato seedlings enhanced expression of DRE/CRT and non-DRE/CRT containing genes, including tomato peroxidase (LePOD), ascorbate peroxidase (LeAPX), catalase (LeCAT), superoxide dismutase (LeSOD), glutathione reductase (LeGR), glutathione peroxidase (LeGP), heat shock protein 70 (LeHSP70), late embryogenesis abundant (LeLEA), metallothionine type 2 (LeMET2), delta 1-pyrroline-5- carboxylate synthetase (LePCS), ABA-aldehyde oxidase (LeAAO) and 9-cis- Epoxycarotenoid dioxygenase (LeECD) under PEG treatment and cold stress (4 °C). Altogether, these findings suggest that EgDREB1 is a functional regulator in enhancing tolerance to drought and cold stress.
    Matched MeSH terms: Lycopersicon esculentum/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links