Displaying all 4 publications

Abstract:
Sort:
  1. Gupta S, Parolia A, Jain A, Kundabala M, Mohan M, de Moraes Porto IC
    J Indian Soc Pedod Prev Dent, 2015 Jul-Sep;33(3):245-9.
    PMID: 26156281 DOI: 10.4103/0970-4388.160402
    The aim of this in vitro study was an attempt to investigate the effect of different surface treatments on the bond strength between pre-existing composite and repair composite resin.
    Matched MeSH terms: Maleates/chemistry
  2. Jamaluddin A, Pearson GJ
    Asian J Aesthet Dent, 1993 Jan;1(1):19-23.
    PMID: 8149147
    This study assessed the nature of the adhesion in repaired glass-ionomer restorative materials. Two chemically different glass-ionomer cements, Ketac Fil and Chemfil II Cap, and three different methods of conditioning the surface for repair were employed. Specimens of each material were prepared and the cut surfaces were then treated with either 35% phosphoric acid, 35% polyacrylic acid or a combination of phosphoric acid followed by polyacrylic acid. Freshly mixed material was injected against these treated surfaces and allowed to set under simulated intraoral conditions. The specimens were tested to failure in flexion after seven days storage. Assessment of the fractured surfaces was then carried out using the scanning electron microscope. The results showed the occurrence of both adhesive and cohesive failure.
    Matched MeSH terms: Maleates/chemistry
  3. Wong TW, Wahab S, Anthony Y
    Drug Dev Ind Pharm, 2007 Jul;33(7):737-46.
    PMID: 17654022
    The drug release behavior of beads made of poly(methyl vinyl ether-co-maleic acid) was investigated with respect to the influence of microwave irradiation. The beads were prepared by an extrusion method with sodium diclofenac as a model water-soluble drug. The beads were subjected to microwave irradiation at 80 W for 5 and 20 min, and at 300 W for 1 min 20 s and 5 min 20 s. The profiles of drug dissolution, drug content, drug-polymer interaction, and polymer-polymer interaction were determined by using dissolution testing, drug content assay, differential scanning calorimetry, and Fourier transform infra-red spectroscopy. Keeping the level of supplied irradiation energy identical, treatment of beads by microwave at varying intensities of irradiation did not bring about similar drug release profiles. The extent and rate of drug released from beads were markedly enhanced through treating the samples by microwave at 80 W as a result of loss of polymer-polymer interaction via the (CH(2))(n) moiety, but decreased upon treating the beads by microwave at 300 W following polymer-polymer interaction via the O-H, COOH, and COO(-) moieties as well as drug-polymer interaction via the N-H, O-H, COO(-), and C-O moieties. The beads treated by microwave at 300 W exhibited a higher level of drug release retardation capacity than those that were treated by microwave at 80 W in spite of polymer-polymer interaction via the (CH(2))(n) moiety was similarly reduced in the matrix. The mechanism of drug release of both microwave-treated and untreated beads tended to follow zero order kinetics. The drug release was markedly governed by the state of polymer relaxation of the matrix and was in turn affected by the state of polymer-polymer and/or drug-polymer interaction in beads.
    Matched MeSH terms: Maleates/chemistry*
  4. Wong TW, Wahab S, Anthony Y
    Int J Pharm, 2008 Jun 5;357(1-2):154-63.
    PMID: 18329203 DOI: 10.1016/j.ijpharm.2008.01.047
    The drug release characteristics of beads made of poly(methyl vinyl ether-co-maleic acid) using Zn2+ as the crosslinking agent were investigated with respect to the influence of microwave irradiation. The beads were prepared by an extrusion method with sodium diclofenac as a model water-soluble drug. They were subjected to microwave irradiation at 80W for 5 and 20 min, and at 300W for 1 min 20s and 5 min 20s. The profiles of drug dissolution, drug content, drug-polymer interaction and polymer-polymer interaction were determined by dissolution testing, drug content assay, differential scanning calorimetry and Fourier transform infrared spectroscopy. Treatment of beads by microwave at varying intensities of irradiation can aid to retard the drug release with a greater reduction extent through treating the beads for a longer duration of irradiation. The treatment of beads by microwave induced the formation of multiple polymeric domains of great strength and extent of polymer-polymer and drug-polymer interaction. The release of drug from beads was retarded via the interplay of O-H, N-H, C-H, (CH2)n and C-O functional groups of these domains, and was mainly governed by the state of polymer relaxation of the matrix unlike that of the untreated beads of which the release of drug was effected via drug diffusion and polymer relaxation. In comparison to Ca2+ crosslinked matrix which exhibited inconsistent drug release retardation behavior under the influence of microwave, the extent and rate of drug released from the Zn2+ crosslinked beads were greatly reduced by microwave and the release of drug from these beads was consistently retarded in response to both high and low intensity microwaves.
    Matched MeSH terms: Maleates/chemistry*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links