Displaying all 4 publications

Abstract:
Sort:
  1. Abdullah N, Teng ST, Hanifah AH, Law IK, Tan TH, Krock B, et al.
    Harmful Algae, 2023 Aug;127:102475.
    PMID: 37544675 DOI: 10.1016/j.hal.2023.102475
    This study describes two novel species of marine dinophytes in the genus Alexandrium. Morphological characteristics and phylogenetic analyses support the placement of the new taxa, herein designated as Alexandrium limii sp. nov. and A. ogatae sp. nov. Alexandrium limii, a species closely related to A. taylorii, is distinguished by having a shorter 2'/4' suture length, narrower plates 1' and 6'', with larger length: width ratios, and by the position of the ventral pore (Vp). Alexandrium ogatae is distinguishable with its metasert plate 1' having almost parallel lateral margins, and by lacking a Vp. Production of paralytic shellfish toxins (PSTs), cycloimines, and goniodomins (GDs) in clonal cultures of A. ogatae, A. limii, and A. taylorii were examined analytically and the results showed that all strains contained GDs, with GDA as major variants (6-14 pg cell-1) for all strains except the Japanese strain of A. limii, which exclusively had a desmethyl variant of GDA (1.4-7.3 pg cell-1). None of the strains contained detectable levels of PSTs and cycloimines.
    Matched MeSH terms: Marine Toxins/analysis
  2. Keyon AS, Guijt RM, Gaspar A, Kazarian AA, Nesterenko PN, Bolch CJ, et al.
    Electrophoresis, 2014 May;35(10):1496-503.
    PMID: 24591173 DOI: 10.1002/elps.201300353
    Paralytic shellfish toxins (PSTs) are produced by marine and freshwater microalgae and accumulate in shellfish including mussels, oysters, and scallops, causing possible fatalities when inadvertently consumed. Monitoring of PST content of shellfish is therefore important for food safety, with currently approved methods based on HPLC, using pre- or postcolumn oxidation for fluorescence detection (HPLC-FLD). CE is an attractive alternative for screening and detection of PSTs as it is compatible with miniaturization and could be implemented in portable instrumentation for on-site monitoring. In this study, CE methods were developed for C(4) D, FLD, UV absorption detection, and MS-making this first report of C(4) D and FLD for PSTs detection. Because most oxidized toxins are neutral, MEKC was used in combination with FLD. The developed CZE-UV and CZE-C(4) D methods provide better resolution, selectivity, and separation efficiency compared to CZE-MS and MEKC-FLD. The sensitivity of the CZE-C(4) D and MEKC-FLD methods was superior to UV and MS, with LOD values ranging from 140 to 715 ng/mL for CZE-C(4) D and 60.9 to 104 ng/mL for MEKC-FLD. With the regulatory limit for shellfish samples of 800 ng/mL, the CZE-C(4) D and MEKC-FLD methods were evaluated for the screening and detection of PSTs in shellfish samples. While the CZE-C(4) D method suffered from significant interferences from the shellfish matrix, MEKC-FLD was successfully used for PST screening of a periodate-oxidized mussel sample, with results confirmed by HPLC-FLD. This confirms the potential of MEKC-FLD for screening of PSTs in shellfish samples.
    Matched MeSH terms: Marine Toxins/analysis*
  3. Suriyanti SN, Usup G
    Toxicon, 2015 Dec 15;108:257-63.
    PMID: 26541573 DOI: 10.1016/j.toxicon.2015.10.017
    Screening of the occurrence of potentially toxic diatoms was carried out at two sites of cage cultures in Tebrau Straits, Johor. Phytoplankton samples from Sungai Pendas and Teluk Sengat were collected using a 20 μm mesh plankton net and salinity was recorded in-situ. Nitzschia and Pseudo-nitzschia cells were isolated and established into clonal cultures. All cultures were tested for domoic acid using HPLC-UV analysis and verified by LC-MS analysis. Three Nitzschia spp. and one Pseudo-nitzschia sp. were identified from these locations. Toxic and non-toxic strains of Nitzschia navis-varingica are found at the cage culture areas. Cellular toxin content in the toxic strain of N. navis-varingica is 1.8 pg cell(-1). This is a new record from Malaysia and this species was isolated from estuarine water with salinity 28 PSU. The discovery of toxic Nitzschia species in Tebrau Straits indicates the potential for domoic acid accumulation in seafood.
    Matched MeSH terms: Marine Toxins/analysis*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links