METHODS: In this experiment, pregnant rats (n = 18) were randomly separated into three groups. These groups were treated from pregnancy day (PD) 2 to PD 21. Subsequently, the male offspring of these rats were provided either a normal-diet (ND) or a TFD from 3rd postnatal week (PNW) to 14th PNW. Then, protein expression of PPAR-γ and global DNA methylation were assessed in the adult rat offspring that were exposed to in utero BPA and subjected to postnatal TFD intake.
RESULTS: The study findings have shown that there was no association between prenatal exposure to BPA and/or TFD consumption and PPAR-γ protein expression within all the study groups in the liver tissue. On the other hand, changes at the molecular level, as reflected by the global DNA hypermethylation induced by prenatal BPA and postnatal TFD intake in adult male SD rat offspring (PNW 14).
CONCLUSIONS: This study underscores the potential impact of prenatal BPA exposure and postnatal TFD intake on epigenetic regulation, as evidenced by global DNA hypermethylation, despite no observable changes in PPAR-γ protein expression. These findings suggest that early-life environmental exposures may predispose individuals to metabolic disruptions, including diabetes and obesity, in adulthood or future generations.
METHODS: We included 33 case-mother dyads and 2 mother-only (child deceased) cases of CHA in a case-only study. Ten genes important in determining fetal exposure to serotonin reuptake inhibitors were examined: CYP1A2, CYP2C9, CYP2C19, CYP2D6, ABCB1, SLC6A4, HTR1A, HTR1B, HTR2A and HTR3B.
RESULTS: Among the exposed cases, polymorphisms that tended to be associated with an increased risk of CHA were SLC6A4 5-HTTLPR and 5-HTTVNTR, HTR1A rs1364043, HTR1B rs6296 and rs6298 and HTR3B rs1176744, but none reached statistical significance due to our limited sample sizes.
CONCLUSION: We identified several polymorphisms that might potentially affect the risk of CHA among exposed fetuses, which warrants further investigation.