Displaying all 3 publications

Abstract:
Sort:
  1. Mohd Sakeh N, Md Razip NN, Mohd Ma'in FI, Abdul Bahari MN, Latif N, Akhtar MN, et al.
    Molecules, 2020 Jul 28;25(15).
    PMID: 32731323 DOI: 10.3390/molecules25153403
    Excessive production of melanin implicates hyperpigmentation disorders. Flavokawain A (FLA) and flavokawain B (FLB) have been reported with anti-melanogenic activity, but their melanogenic inhibition and toxicity effects on the vertebrate model of zebrafish are still unknown. In the present study, cytotoxic as well as melanogenic effects of FLA and FLB on cellular melanin content and tyrosinase activity were evaluated in α-MSH-induced B16/F10 cells. Master regulator of microphthalmia-associated transcription factor (Mitf) and the other downstream melanogenic-related genes were verified via quantitative real time PCR (qPCR). Toxicity assessment and melanogenesis inhibition on zebrafish model was further observed. FLA and FLB significantly reduced the specific cellular melanin content by 4.3-fold and 9.6-fold decrement, respectively in α-MSH-induced B16/F10 cells. Concomitantly, FLA significantly reduced the specific cellular tyrosinase activity by 7-fold whilst FLB by 9-fold. The decrement of melanin production and tyrosinase activity were correlated with the mRNA suppression of Mitf which in turn down-regulate Tyr, Trp-1 and Trp-2. FLA and FLB exhibited non-toxic effects on the zebrafish model at 25 and 6.25 µM, respectively. Further experiments on the zebrafish model demonstrated successful phenotype-based depigmenting activity of FLA and FLB under induced melanogenesis. To sum up, our findings provide an important first key step for both of the chalcone derivatives to be further studied and developed as potent depigmenting agents.
    Matched MeSH terms: Melanoma, Experimental/pathology
  2. Santhanam RK, Ahmad S, Abas F, Safinar Ismail I, Rukayadi Y, Tayyab Akhtar M, et al.
    Molecules, 2016 May 24;21(6).
    PMID: 27231889 DOI: 10.3390/molecules21060652
    Zanthoxylum rhetsa is an aromatic tree, known vernacularly as "Indian Prickly Ash". It has been predominantly used by Indian tribes for the treatment of many infirmities like diabetes, inflammation, rheumatism, toothache and diarrhea. In this study, we identified major volatile constituents present in different solvent fractions of Z. rhetsa bark using GC-MS analysis and isolated two tetrahydrofuran lignans (yangambin and kobusin), a berberine alkaloid (columbamine) and a triterpenoid (lupeol) from the bioactive chloroform fraction. The solvent fractions and purified compounds were tested for their cytotoxic potential against human dermal fibroblasts (HDF) and mouse melanoma (B16-F10) cells, using the MTT assay. All the solvent fractions and purified compounds were found to be non-cytotoxic to HDF cells. However, the chloroform fraction and kobusin exhibited cytotoxic effect against B16-F10 melanoma cells. The presence of bioactive lignans and alkaloids were suggested to be responsible for the cytotoxic property of Z. rhetsa bark against B16-F10 cells.
    Matched MeSH terms: Melanoma, Experimental/pathology
  3. Chan YY, Kim KH, Cheah SH
    J Ethnopharmacol, 2011 Oct 11;137(3):1183-8.
    PMID: 21810462 DOI: 10.1016/j.jep.2011.07.050
    ETHNOPHARMACOLOGICAL RELEVANCE: Sargassum polycystum, a type of brown seaweed, has been used for the treatment of skin-related disorders in traditional medicine.

    AIM OF THE STUDY: The aim of the present study is to investigate the antimelanogenesis effect of Sargassum polycystum extracts by cell-free mushroom tyrosinase assay followed by cell viability assay, cellular tyrosinase assay and melanin content assay using B16F10 murine melanoma cells.

    MATERIALS AND METHODS: Sargassum polycystum was extracted with 95% ethanol and further fractionated with hexane, ethyl acetate and water. The ethanolic crude extract and its fractionated extracts were tested for their potential to act as antimelanogenesis or skin-whitening agents by their abilities to inhibit tyrosinase activity in the cell-free mushroom tyrosinase assay and cellular tyrosinase derived from melanin-forming B16F10 murine melanoma cells. The tyrosinase inhibitory activity was correlated to the inhibition of melanin production in α-MSH-stimulated and unstimulated B16F10 cells.

    RESULTS: Sargassum polycystum ethanolic extract and its fractions had little or no inhibitory effect on mushroom tyrosinase activity. However, when tested on cellular tyrosinase, the ethanolic extract and its non-polar fraction, hexane fraction (SPHF), showed significant inhibition of cellular tyrosinase activity. In parallel to its cellular tyrosinase inhibitory activity, SPHF was also able to inhibit basal and α-MSH-stimulated melanin production in B16F10 cells.

    CONCLUSIONS: Our findings showed that (i) cellular tyrosinase assay is more reliable than mushroom tyrosinase assay in the initial testing of potential antimelanogenesis agents and, (ii) SPHF inhibited melanogenesis by inhibiting cellular tyrosinase activity. SPHF may be useful for treating hyperpigmentation and as a skin-whitening agent in cosmetics industry.

    Matched MeSH terms: Melanoma, Experimental/pathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links