This paper records 2 fatal cases of melioidosis in wallabies from Australia maintained in the Botanical Gardens, Penang, for about 3 months. The nature of lesions described is different from that described by various workers.
Specific antibody to Pseudomonas pseudomallei exotoxin was detected in sheep sera exposed to natural infection. An enzyme-linked immunosorbent assay (ELISA) was used. Serum antitoxin was present in 49.3% of sera obtained from a flock of sheep naturally exposed to P. pseudomallei infection. Among these sera, 17.0% gave titers of 10,000. In contrast, serum antitoxin was present in only 6.0% of sera collected from sheep kept on a melioidosis-free farm. The ELISA reactivity of all positive sera could be completely absorbed with purified P. pseudomallei exotoxin. Similarly, preincubation of the exotoxin-coated wells with specific antiserum inhibited the ELISA reactivity of sheep sera. The results indicate that exotoxin is produced in vivo during infection by P. pseudomallei.
Melioidosis was diagnosed in two cats at necropsy. The first cat presented with jaundice and anaemia but died of overwhelming sepsis soon after admission, despite blood transfusion and other supportive measures. The second cat died several days after developing neurological signs; an infected digital wound may have been the primary focus of infection in this patient. The cats had presumably acquired the infection in Malaysia and northern Australia, respectively, and in both cases disease may have represented reactivation of a latent infection brought on by the stress of relocation. The epidemiology, clinical presentation, diagnosis and treatment of melioidosis are discussed from a feline perspective.
Epidemiology of melioidosis is poorly understood because its occurrence is influenced by complex interaction of environmental, climatic, physicochemical and host factors. We investigated the potential risk factors for the exposure to Burkholderia pseudomallei in small ruminants' farms in Peninsular Malaysia.
Burkholderia pseudomallei causes melioidosis, a life-threatening infection in both humans and animals. Water is an important reservoir of the bacteria and may serve as a source of environmental contamination leading to infection. B. pseudomallei has an unusual ability to survive in water for a long period. This paper investigates physicochemical properties of water associated with the presence of B. pseudomallei in water supply in small ruminant farms in Peninsular Malaysia. Physicochemical properties of water samples taken from small ruminant farms that included temperature, pH, dissolved oxygen (DO2), optical density (OD), and chemical oxygen demand (COD) were measured after which the samples were cultured for B. pseudomallei. Multivariable logistic regression model revealed that slightly acidic water pH and higher COD level were significantly associated with the likelihood of the B. pseudomallei presence in the water.
Seven isolates of Burkholderia pseudomallei from cases of melioidosis in human (2 isolates) and animal (2 isolates), cat (one isolate) and from soil samples (2 isolates) were examined for in vitro sensitivity to 14 antimicrobial agents and for presence of plasmid DNA. Randomly amplified polymorphic DNA (RAPD) analysis was used to type the isolates, using two arbitrary primers. All isolates were sensitive to chloramphenicol, kanamycin, carbenicillin, rifampicin, enrofloxacin, tetracycline and sulfamethoxazole-trimethoprim. No plasmid was detected in all the isolates tested. RADP fingerprinting demonstrated genomic relationship between isolates, which provides an effective method to study the epidemiology of the isolates examined.
Burkholderia pseudomallei is a Gram-negative saprophytic soil bacterium, which is the etiologic agent of melioidosis, a severe and fatal infectious disease occurring in human and animals. Distinct clinical and animal isolates have been shown to exhibit differences in phenotypic trait such as growth rate, colony morphology, antimicrobial resistance, and virulence. This study was carried out to gain insight into the intrinsic differences between 4 clinical and 6 animal B. pseudomallei isolates from Malaysia. The 16S rRNA-encoding genes from these 10 isolates of B. pseudomallei were sequenced to confirm the identity of these isolates along with the avirulent Burkholderia thailandensis. The nucleotide sequences indicated that the 16S rRNA-encoding genes among the 10 B. pseudomallei isolates were identical to each other. However, the nucleotide sequence differences in the 16S rRNA-encoding genes appeared to be B. pseudomallei and B. thailandensis specific. The growth rate of all B. pseudomallei isolates was determined by generating growth curves at 37 degrees C for 72 h. The isolates were found to differ in growth rates with doubling time varying from 1.5 to 2.3 h. In addition, the B. pseudomallei isolates exhibited considerable variation in colony morphology when grown on Ashdown media, brain-heart infusion agar, and Luria-Bertani agar over 9 days of observation. Antimicrobial susceptibility tests indicated that 80% of the isolates examined were Amp(R) Cb(R) Kn(R) Gm(R) Chl(S) Te(S). Virulence of the B. pseudomallei clinical and animal isolates was evaluated in B. pseudomallei-susceptible BALB/c mice. Most of the clinical isolates were highly virulent. However, virulence did not correlate with isolate origin since 2 of the animal isolates were also highly virulent.