Displaying all 6 publications

Abstract:
Sort:
  1. Abdullah AR, Tahir NM, Wei LK
    Bull Environ Contam Toxicol, 1994 Oct;53(4):618-26.
    PMID: 8000192
    Matched MeSH terms: Methylene Chloride/chemistry
  2. Shariffa YN, Tan TB, Uthumporn U, Abas F, Mirhosseini H, Nehdi IA, et al.
    Food Res Int, 2017 11;101:165-172.
    PMID: 28941679 DOI: 10.1016/j.foodres.2017.09.005
    The aim of this study was to develop formulations to produce lycopene nanodispersions and to investigate the effects of the homogenization pressure on the physicochemical properties of the lycopene nanodispersion. The samples were prepared by using emulsification-evaporation technique. The best formulation was achieved by dispersing an organic phase (0.3% w/v lycopene dissolved in dichloromethane) in an aqueous phase (0.3% w/v Tween 20 dissolved in deionized water) at a ratio of 1:9 by using homogenization process. The increased level of homogenization pressure to 500bar reduced the particle size and lycopene concentration significantly (p<0.05). Excessive homogenization pressure (700-900bar) resulted in large particle sizes with high dispersibility. The zeta potential and turbidity of the lycopene nanodispersion were significantly influenced by the homogenization pressure. The results from this study provided useful information for producing small-sized lycopene nanodispersions with a narrow PDI and good stability for application in beverage products.
    Matched MeSH terms: Methylene Chloride/chemistry
  3. Pan Y, Tiong KH, Abd-Rashid BA, Ismail Z, Ismail R, Mak JW, et al.
    J Ethnopharmacol, 2012 Sep 28;143(2):586-91.
    PMID: 22885070 DOI: 10.1016/j.jep.2012.07.024
    Labisa pumila (LP), popularly known with its local name, Kacip Fatimah, is a well known herb grown in Indochina and Southeast Asia and is traditionally used to regain energy after giving birth in women. The propensity of LP to cause drug-herb interaction via cytochrome P450 (CYP) enzyme system has not been investigated.
    Matched MeSH terms: Methylene Chloride/chemistry
  4. Saleem H, Htar TT, Naidu R, Ahmad I, Zengin G, Ahmad M, et al.
    J Pharm Biomed Anal, 2019 Mar 20;166:128-138.
    PMID: 30640043 DOI: 10.1016/j.jpba.2019.01.007
    In this study, different solvent extracts (methanol, dichloromethane and n-hexane) from aerial and stem parts of Buxus papillosa C.K. Schneid (Buxaceae) were investigated for a panoply of bioassays. Biological profiles were established by determining antioxidant and enzyme inhibition profiles. Toxicity was tested using MTT cell viability assay on five different human cancer cell lines i.e, MCF-7, MDA-MB-231, CaSki, DU-145 and SW-480. For chemical fingerprinting, total bioactive contents and UHPLC-MS secondary metabolites profile were determined. Generally, both aerial and stem methanol extracts had highest total bioactive contents, radical scavenging and reducing power potential. DCM and n-hexane extracts were found to be most active for total antioxidant and metal chelating activity. The UHPLC-MS analysis of methanol extracts revealed the presence of several phenolic, flavonoid, alkaloid, saponin and depsipeptide derivatives. All the extracts were significantly active against butyrylcholinesterase, whereas moderate inhibition was observed for acetylcholinesterase, α-glucosidase and urease. Similarly, a considerable level of cytotoxicity was observed against all the tested cell lines with IC50 values ranging from 26 to 225.9 μg/mL. Aerial methanol and stem n-hexane extracts were found to be most cytotoxic. Principal component analysis was also performed to find any possible correlation between biological activities and total bioactive contents. On the basis of our findings, B. papillosa may be considered as promising source of bioactive molecules.
    Matched MeSH terms: Methylene Chloride/chemistry
  5. Jinfeng EC, Mohamad Rafi MI, Chai Hoon K, Kok Lian H, Yoke Kqueen C
    World J Microbiol Biotechnol, 2017 Jan;33(1):5.
    PMID: 27844243
    Plants are primary source of natural product drugs. However, with every new bioactive molecule reported from a plant source, there follows reports of endangered status or even extinction of a medicinally important plant due to over-harvesting. Hence, the attention turned towards fungi namely the endophytes, which reside within medicinally important plants and thus may have acquired their medicinal properties. Strobilanthes crispus is a traditional medicinal plant which has been used traditionally to treat kidney stones, diabetes, hypertension and cancer as well as having antimicrobial activities. In our efforts to bioprospect for anticancer and antimicrobial metabolites, two fungal endophytes most closely related to the Sordariomycetes sp. showed promising results. Sample (PDA)BL3 showed highest significant antimicrobial activity against 6 bacteria at 200 µg/disc whereas sample (PDA)BL5 has highest significant anticancer activity against all 5 cancer cell lines at concentrations ranging from 30 to 300 μg/ml. As for the gas chromatography coupled with mass spectrometry (GC-MS) results, a total of 20 volatile metabolites identified from sample (PDA)BL3 and 21 volatile metabolites identified from sample (PDA)BL5 having more than 1% abundance. Both GC-MS analysis showed that compound Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) has the highest abundance at 15.10% abundance for sample (PDA)BL3 and 19.00% abundance for sample (PDA)BL5 respectively. In conclusion, these results have shown bio-prospecting potential of endophytic fungi having antimicrobial and anticancer activities as well as its potential secondary metabolites of interest. Therefore, this work has further indicated the medicinal and industrial potential of endophytic fungi.
    Matched MeSH terms: Methylene Chloride/chemistry*
  6. Mohd Fisall UF, Ismail NZ, Adebayo IA, Arsad H
    Mol Biol Rep, 2021 May;48(5):4465-4475.
    PMID: 34086162 DOI: 10.1007/s11033-021-06466-y
    Moringa oleifera is a well-known medicinal plant which has anti-cancer and other biological activities. This research aims to determine the cytotoxic and apoptotic effect of M. oleifera leave extract on the breast cancer (MCF7) cells. The extracts were prepared using hexane, dichloromethane, chloroform and n-butanol by fractionating the crude 80% methanol extract of the plant leaves. The cytotoxic effect of the extracts on MCF7 cells were determined using CellTiter 96® AQueous One Solution Cell Proliferation (MTS) assay. The apoptosis study was conducted using Annexin V-FITC analysis and confirmed by Western blotting using selected proteins, which are p53, Bax, cytochrome c and caspase 8. Our results showed that the dichloromethane (DF-CME-MOL) extract was selectively cytotoxic to MCF7 cells (5 μg/mL) without significantly inhibiting the non-cancerous breast (MCF 10A) cells. It had the highest selectivity index (SI) value of 9.5 among the tested extracts. It also induced early apoptosis and increased the expressions of pro-apoptotic proteins Bax, caspase 8 and p53 in MCF7 cells. Gas chromatography-mass spectrometry analysis (GC-MS) analysis showed that the major compounds found in DF-CME-MOL were benzeneacetonitrile, 4-hydroxy- and benzeneacetic acid, 4-hydroxy-, methyl ester among others that were detected. Thus, DF-CME-MOL extract was found to inhibit the proliferation of MCF7 cells by apoptosis induction, which is likely due to the activities of the detected phytochemical compounds of the extract.
    Matched MeSH terms: Methylene Chloride/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links